T. S. Kemp, The Origin and Evolution of Mammals, 2005.

J. D. Archibald, Extinction and Radiation: How the Fall of Dinosaurs Led to the Rise of Mammals, 2011.

Z. Luo, Transformation and diversification in early mammal evolution, Nature, vol.450, pp.1011-1019, 2007.

D. M. Grossnickle and P. D. Polly, Mammal disparity decreases during the Cretaceous angiosperm radiation, Proc. Biol. Sci, vol.280, p.20132110, 2013.

R. A. Close, M. Friedman, G. T. Lloyd, and R. B. Benson, Evidence for a mid-Jurassic adaptive radiation in mammals, Curr. Biol, vol.25, pp.2137-2142, 2015.

G. P. Wilson, A. R. Evans, I. J. Corfe, P. D. Smits, M. Fortelius et al., Adaptive radiation of multituberculate mammals before the extinction of dinosaurs, Nature, vol.483, pp.457-460, 2012.

Z. Luo, C. Yuan, Q. Meng, and Q. Ji, A Jurassic eutherian mammal and divergence of marsupials and placentals, Nature, vol.476, pp.442-445, 2011.

T. J. Halliday and A. Goswami, Eutherian morphological disparity across the end-Cretaceous mass extinction, Biol. J. Linn. Soc, vol.118, pp.152-168, 2016.

D. M. Grossnickle and E. Newham, Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K-Pg boundary, Proc. Biol. Sci, vol.283, p.20160256, 2016.

F. A. Smith, A. G. Boyer, J. H. Brown, D. P. Costa, T. Dayan et al., The evolution of maximum body size of terrestrial mammals, Science, vol.330, pp.1216-1219, 2010.

M. S. Springer, C. A. Emerling, R. W. Meredith, J. E. Jane?ka, E. Eizirik et al., Waking the undead: Implications of a soft explosive model for the timing of placental mammal diversification, Mol. Phylogenet. Evol, vol.106, pp.86-102, 2017.

C. Jeuniaux, On some biochemical aspects of regressive evolution in animals, Biochemical Evolution and the Origin of Life, E. Schoffeniels, pp.304-313, 1971.

R. G. Boot, E. F. Blommaart, E. Swart, K. Ghauharali-van-der-vlugt, N. Bijl et al., Identification of a novel acidic mammalian chitinase distinct from chitotriosidase, J. Biol. Chem, vol.276, pp.6770-6778, 2001.

S. Strobel, A. Roswag, N. I. Becker, T. E. Trenczek, and J. A. Encarnação, Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase, PLOS ONE, vol.8, p.72770, 2013.

M. Ohno, M. Kimura, H. Miyazaki, K. Okawa, R. Onuki et al., Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system, Sci. Rep, vol.6, p.37756, 2016.

M. Hussain and J. B. Wilson, New paralogues and revised time line in the expansion of the vertebrate GH18 family, J. Mol. Evol, vol.76, pp.240-260, 2013.

M. C. Janiak, M. E. Chaney, and A. J. Tosi, Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates, Mol. Biol. Evol, vol.35, pp.607-622, 2017.

A. M. Olland, J. Strand, E. Presman, R. Czerwinski, D. Joseph-mccarthy et al., Triad of polar residues implicated in pH specificity of acidic mammalian chitinase, Protein Sci, vol.18, pp.569-578, 2009.

L. W. Tjoelker, L. Gosting, S. Frey, C. L. Hunter, H. L. Trong et al., Structural and functional definition of the human chitinase chitin-binding domain, J. Biol. Chem, vol.275, pp.514-520, 2000.

J. Nio, W. Fujimoto, A. Konno, Y. Kon, M. Owhashi et al., Cellular expression of murine Ym1 and Ym2, chitinase family proteins, as revealed by in situ hybridization and immunohistochemistry, Histochem. Cell Biol, vol.121, pp.473-482, 2004.

J. Romiguier, V. Ranwez, E. J. Douzery, and N. Galtier, Genomic evidence for large, long-lived ancestors to placental mammals, Mol. Biol. Evol, vol.30, pp.5-13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268010

M. A. O'leary, J. I. Bloch, J. J. Flynn, T. J. Gaudin, A. Giallombardo et al., The placental mammal ancestor and the post-K-Pg radiation of placentals, Science, vol.339, pp.662-667, 2013.

R. W. Meredith, J. Gatesy, W. J. Murphy, O. A. Ryder, and M. S. Springer, Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals, PLOS Genet, vol.5, p.1000634, 2009.

C. A. Emerling, H. T. Huynh, M. A. Nguyen, R. W. Meredith, and M. S. Springer, Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution, Proc. R. Soc. B, vol.282, p.20151817, 2015.
DOI : 10.1098/rspb.2015.1817

URL : http://rspb.royalsocietypublishing.org/content/royprsb/282/1819/20151817.full.pdf

R. W. Meredith, J. E. Jane?ka, J. Gatesy, O. A. Ryder, C. A. Fisher et al., Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification, Science, vol.334, pp.521-524, 2011.
DOI : 10.1126/science.1211028

M. Reis, J. Inoue, M. Hasegawa, R. J. Asher, P. C. Donoghue et al., Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny, Proc. Biol. Sci, vol.279, pp.3491-3500, 2012.

J. Wu, T. Yonezawa, and H. Kishino, Rates of molecular evolution suggest natural history of life history traits and a post-K-Pg nocturnal bottleneck of placentals, Curr. Biol, vol.27, p.5, 2017.

J. D. Archibald and D. H. Deutschman, Quantitative analysis of the timing of the origin and diversification of extant placental orders, J. Mamm. Evol, vol.8, pp.107-124, 2001.

T. J. Halliday, P. Upchurch, and A. Goswami, Resolving the relationships of Paleocene placental mammals, Biol. Rev, vol.92, pp.521-550, 2017.

F. Delsuc, J. L. Metcalf, L. Wegener-parfrey, S. J. Song, A. González et al., Convergence of gut microbiomes in myrmecophagous mammals, Mol. Ecol, vol.23, pp.1301-1317, 2014.
DOI : 10.1111/mec.12501

URL : http://onlinelibrary.wiley.com/doi/10.1111/mec.12501/pdf

J. G. Sanders, A. C. Beichman, J. Roman, J. J. Scott, D. Emerson et al., Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores, Nat. Commun, vol.6, p.8285, 2015.
DOI : 10.1038/ncomms9285

URL : http://www.nature.com/articles/ncomms9285.pdf

Y. Liu, G. He, H. Xu, X. Han, G. Jones et al., Adaptive functional diversification of lysozyme in insectivorous bats, Mol. Biol. Evol, vol.31, pp.2829-2835, 2014.
DOI : 10.1093/molbev/msu240

URL : https://academic.oup.com/mbe/article-pdf/31/11/2829/13170854/msu240.pdf

R. G. Boot, G. H. Renkema, A. Strijland, A. J. Van-zonneveld, and J. M. Aerts, Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages, J. Biol. Chem, vol.270, pp.26252-26256, 1995.
DOI : 10.1074/jbc.270.44.26252

URL : https://openaccess.leidenuniv.nl/bitstream/handle/1887/50846/JournalofBiologicalChemistry270%281995%2926252.pdf?sequence=1

R. G. Boot, A. P. Bussink, M. Verhoek, P. A. De-boer, A. F. Moorman et al., Marked differences in tissue-specific expression of chitinases in mouse and man, J. Histochem. Cytochem, vol.53, pp.1283-1292, 2005.

W. D. Matthew, The carnivora and the insectivora of the bridger basin, middle eocene, Mem. Am. Museum Nat. Hist, vol.9, pp.1199-203, 1909.

H. Wilman, J. Belmaker, J. Simpson, C. De-la-rosa, M. M. Rivadeneira et al., EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals, Ecology, vol.95, p.2027, 2014.

M. Kearse, R. Moir, A. Wilson, S. Stones-havas, M. Cheung et al., Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.28, pp.1647-1649, 2012.

R. C. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

URL : https://academic.oup.com/nar/article-pdf/32/5/1792/7055030/gkh340.pdf

A. Stamatakis, RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1313, 2014.

M. A. Miller, W. Pfeiffer, and T. Schwartz, Creating the CIPRES Science Gateway for inference of large phylogenetic trees, 2010 Gateway Computing Environments Workshop, GCE 2010, pp.1-8, 2010.
DOI : 10.1109/gce.2010.5676129

URL : http://www.phylo.org/sub_sections/portal/sc2010_paper.pdf

M. Burset, I. A. Seledtsov, and V. V. Solovyev, Analysis of canonical and non-canonical splice sites in mammalian genomes, Nucleic Acids Res, vol.28, pp.4364-4375, 2000.
DOI : 10.1093/nar/28.21.4364

URL : https://academic.oup.com/nar/article-pdf/28/21/4364/9904826/284364.pdf

J. Chen, D. N. Cooper, N. Chuzhanova, C. Férec, and G. P. Patrinos, Gene conversion: Mechanisms, evolution and human disease, Nat. Rev. Genet, vol.8, pp.762-775, 2007.
DOI : 10.1038/nrg2193

A. Grafen, The phylogenetic regression, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.326, pp.119-157, 1989.
DOI : 10.1098/rstb.1989.0106

D. Orme, R. Freckleton, G. Thomas, T. Petzoldt, S. Fritz et al., caper: Comparative analyses of phylogenetics and evolution in R, 2013.

Z. Yang, Phylogenetic analysis by maximum likelihood, Mol. Biol. Evol, vol.4, pp.1586-1591, 2007.

Y. Fan, Z. Huang, C. Cao, C. Chen, Y. Chen et al., Genome of the Chinese tree shrew, Nat. Commun, vol.4, p.1426, 2013.
DOI : 10.1038/ncomms2416

URL : http://www.nature.com/articles/ncomms2416.pdf

D. H. Low, K. Sunagar, E. A. Undheim, S. A. Ali, A. C. Alagon et al., Dracula's children: Molecular evolution of vampire bat venom, J. Proteomics, vol.89, pp.95-111, 2013.
DOI : 10.1016/j.jprot.2013.05.034

I. M. Francischetti, T. C. Assumpção, D. Ma, Y. Li, E. C. Vicente et al., The "Vampirome": Transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies, J. Proteomics, vol.82, pp.288-319, 2013.

C. D. Phillips and R. J. Baker, Secretory gene recruitments in vampire bat salivary adaptation and potential convergences with sanguivorous leeches, Front. Ecol. Evol, vol.3, pp.1-11, 2015.
DOI : 10.3389/fevo.2015.00122

URL : https://www.frontiersin.org/articles/10.3389/fevo.2015.00122/pdf

J. Ma, L. M. Li, H. Y. Jiang, X. J. Zhang, J. Li et al., Transcriptomic analysis identifies genes and pathways related to myrmecophagy in the Malayan pangolin (Manis javanica), PeerJ, vol.5, p.4140, 2017.
DOI : 10.7717/peerj.4140

URL : https://peerj.com/articles/4140.pdf

R. M. Nowak, Walker's Mammals of the World, 1999.

M. Hofreiter, H. N. Poinar, W. G. Spaulding, K. Bauer, P. S. Martin et al., A molecular analysis of ground sloth diet through the last glaciation, Mol. Ecol, vol.9, 1975.

M. S. Bargo, The ground sloth Megatherium americanum: Skull shape, bite forces, and diet, Acta Palaeontol. Pol, vol.46, pp.173-192, 2001.

R. K. Mcafee, Feeding mechanics and dietary implications in the fossil sloth Neocnus (Mammalia: Xenarthra: Megalonychidae) from Haiti, J. Morphol, vol.272, pp.1204-1216, 2011.

M. C. Mckenna, A. A. Wyss, and J. J. Flynn, Paleogene pseudoglyptodont xenarthrans from central Chile and Argentine Patagonia, Am. Mus. Novit, vol.3536, pp.1-18, 2006.

S. F. Vizcaíno, G. H. Cassini, J. C. Fernicola, and M. S. Bargo, Evaluating habitats and feeding habits through ecomorphological features in glyptodonts (Mammalia, xenarthra), Ameghiniana, vol.48, pp.305-319, 2011.

E. Gheerbrant, Paleocene emergence of elephant relatives and the rapid radiation of African ungulates, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.10717-10721, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00548769

E. Gheerbrant, M. Amaghzaz, B. Bouya, F. Goussard, and C. Letenneur, Ocepeia (middle Paleocene of Morocco): The oldest skull of an afrotherian mammal, PLOS ONE, vol.9, p.89739, 2014.

E. Gheerbrant, A. Filippo, and A. Schmitt, Convergence of afrotherian and laurasiatherian ungulate-like mammals: First morphological evidence from the Paleocene of Morocco, PLOS ONE, vol.11, p.157556, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360173

N. B. Simmons and J. H. Geisler, Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera, Bull. Am. Museum Nat. Hist, vol.235, pp.1-182, 1998.

N. B. Simmons, K. L. Seymour, J. Habersetzer, and G. F. Gunnell, Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation, Nature, vol.451, pp.818-821, 2008.

E. R. Price, A. Brun, E. Caviedes-vidal, and W. H. Karasov, Digestive adaptations of aerial lifestyles, Phys. Chem. Chem. Phys, vol.30, pp.69-78, 2015.
DOI : 10.1152/physiol.00020.2014

URL : http://physiologyonline.physiology.org/content/nips/30/1/69.full.pdf

L. D. Martin, Carnivore Behavior, Ecology, and Evolution, pp.536-568, 1989.

M. Spaulding and J. J. Flynn, Phylogeny of the Carnivoramorpha: The impact of postcranial characters, J. Syst. Palaeontol, vol.10, pp.653-677, 2012.

G. Storch, Eomanis waldi, ein Schuppentier aus dem Mittel-Eozän der 'Grube Messel' bei Darmstadt (Mammalia: Pholidota), Senckenbergiana Lethaea, vol.59, pp.503-529, 1978.

T. J. Gaudin, R. J. Emry, and J. R. Wible, The phylogeny of living and extinct pangolins (Mammalia, Pholidota) and associated taxa: A morphology based analysis, J. Mamm. Evol, vol.16, pp.235-305, 2009.

F. Solé, E. Gheerbrant, M. Amaghzaz, and B. Bouya, Further evidence of the African antiquity of hyaenodontid ('Creodonta' , Mammalia) evolution, Zool. J. Linn. Soc, vol.156, pp.827-846, 2009.

K. D. Rose, L. T. Holbrook, R. S. Rana, K. Kumar, K. E. Jones et al., Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India, Nat. Commun, vol.5, p.5570, 2014.
DOI : 10.1038/ncomms6570

URL : http://www.nature.com/articles/ncomms6570.pdf

L. N. Cooper, E. R. Seiffert, M. Clementz, S. I. Madar, S. Bajpai et al., Anthracobunids from the middle eocene of India and Pakistan are stem perissodactyls, PLOS ONE, vol.9, p.109232, 2014.

F. Welker, M. J. Collins, J. A. Thomas, M. Wadsley, S. Brace et al., Ancient proteins resolve the evolutionary history of Darwin's South American ungulates, Nature, vol.522, pp.81-84, 2015.
DOI : 10.1038/nature14249

M. Buckley, Ancient collagen reveals evolutionary history of the endemic South American "ungulates, Proc. Biol. Sci, vol.282, p.20142671, 2015.
DOI : 10.1098/rspb.2014.2671

URL : http://rspb.royalsocietypublishing.org/content/royprsb/282/1806/20142671.full.pdf

M. Westbury, S. Baleka, A. Barlow, S. Hartmann, J. L. Paijmans et al., A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica, Nat. Commun, vol.8, p.15951, 2017.
DOI : 10.1038/ncomms15951

URL : https://www.nature.com/articles/ncomms15951.pdf

J. G. Thewissen and S. T. Hussain, Postcranial Osteology of the most Primitive Artiodactyl: Diacodexis pakistanensis (Dichobunidae), Anat. Histol. Embryol, vol.19, pp.37-48, 1990.
DOI : 10.1111/j.1439-0264.1990.tb00876.x

J. M. Theodor, The Evolution of Artiodactyls, pp.32-58, 2007.

Q. Li and X. Ni, An early Oligocene fossil demonstrates treeshrews are slowly evolving "living fossils, Sci. Rep, vol.6, p.18627, 2016.
DOI : 10.1038/srep18627

URL : http://www.nature.com/articles/srep18627.pdf

L. Marivaux, L. Bocat, Y. Chaimanee, J. Jaeger, B. Marandat et al., Systematic, evolutionary and palaeobiogeographic implications, vol.35, pp.395-420, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00254953

M. , Rethinking primate origins, Science, vol.184, pp.436-443, 1974.

B. A. Williams, R. F. Kay, and E. C. Kirk, New perspectives on anthropoid origins, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.4797-4804, 2010.

X. Ni, D. L. Gebo, M. Dagosto, J. Meng, P. Tafforeau et al., The oldest known primate skeleton and early haplorhine evolution, Nature, vol.498, pp.60-64, 2013.

F. D. and M. W. , European Research Council consolidator grant (ConvergeAnt no. 683257; F.D.), and the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. PCOFUND-GA-2013-609102, through the PRESTIGE programme, Acknowledgments: We thank three anonymous reviewers for comments on a previous draft of the manuscript and J. Johnson and the Broad Institute for providing access to xenarthran genome assemblies. Funding: This research was supported by an NSF Postdoctoral Research Fellowship in Biology

C. A. Emerling, F. Delsuc, and M. W. Nachman, Chitinase genes (CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals, Sci. Adv, vol.4, p.6478, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01879154

, This article cites 71 articles, 15 of which you can access for free