Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans

Abstract : Bees are thought to be strict users of carbohydrates as metabolic fuel for flight. Many insects, however, have the ability to oxidize the amino acid proline at a high rate, which is a unique feature of this group of animals. The presence of proline in the haemolymph of bees and in the nectar of plants led to the hypothesis that plants may produce proline as a metabolic reward for pollina- tors. We investigated flight muscle metabolism of hymenopteran species using high-resolution respirometry performed on permeabilized muscle fibres. The muscle fibres of the honeybee, Apis mellifera, do not have a detectable capacity to oxidize proline, as those from the migratory locust, Locusta migratoria, used here as an outgroup representative. The closely related bumblebee, Bombus impatiens, can oxidize proline alone and more than doubles its respiratory capacity when proline is combined with carbohydrate-derived substrates. A distant wasp species, Vespula vulgaris, exhibits the same metabolic pheno- type as the bumblebee, suggesting that proline oxidation is common in hymenopterans. Using a combination of mitochondrial substrates and inhibi- tors, we further show that in B. impatiens, proline oxidation provides reducing equivalents and electrons directly to the electron transport system. Together, these findings demonstrate that some bee and wasp species can greatly enhance the oxidation of carbohydrates using proline as fuel for flight.
Document type :
Journal articles
Complete list of metadatas

https://hal-sde.archives-ouvertes.fr/hal-01346999
Contributor : Nathalie Lyvet <>
Submitted on : Wednesday, July 20, 2016 - 10:44:59 AM
Last modification on : Thursday, February 7, 2019 - 4:23:42 PM

Links full text

Identifiers

Collections

Citation

Loïc Teulier, Jean-Michel Weber, Julie Crevier, Charles-A. Darveau. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proceedings of the Royal Society B: Biological Sciences, Royal Society, The, 2016, 283: 20160333, pp.1-8. ⟨10.1098/rspb.2016.0333⟩. ⟨hal-01346999⟩

Share

Metrics

Record views

129