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Abstract: In this study, eight airborne laser scanning (ALS)-based single tree detection 

methods are benchmarked and investigated. The methods were applied to a unique dataset 

originating from different regions of the Alpine Space covering different study areas, forest 
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types, and structures. This is the first benchmark ever performed for different forests within 

the Alps. The evaluation of the detection results was carried out in a reproducible way by 

automatically matching them to precise in situ forest inventory data using a restricted nearest 

neighbor detection approach. Quantitative statistical parameters such as percentages of 

correctly matched trees and omission and commission errors are presented. The proposed 

automated matching procedure presented herein shows an overall accuracy of 97%. Method 

based analysis, investigations per forest type, and an overall benchmark performance are 

presented. The best matching rate was obtained for single-layered coniferous forests. 

Dominated trees were challenging for all methods. The overall performance shows a 

matching rate of 47%, which is comparable to results of other benchmarks performed in the 

past. The study provides new insight regarding the potential and limits of tree detection with 

ALS and underlines some key aspects regarding the choice of method when performing 

single tree detection for the various forest types encountered in alpine regions. 

Keywords: single tree extraction; airborne laser scanning; forest inventory; comparative 

testing; co-registration; mountain forests; Alpine Space; matching 

 

1. Introduction 

The use of remote sensing data and related methods (i.e., biomass estimation, delineation of forested 

areas) has become a standard in forest management [1–3]. Large area applications such as, for example, 

harvesting planning or forest stand mapping based on remote sensing products are now widely 

operational, especially in the northern European countries [4–6]. This development enables  

high-precision forest management, which is a prerequisite for the sustainable use of one of the key 

resources within the context of renewable energy. In mountainous regions, and particularly in the Alps, 

the use of forest resources in remote areas has decreased as valorization is hampered by accessibility 

constraints that prevent efficient mapping, management, and harvesting. To develop strategies to tackle 

this shortcoming, the research project NEWFOR (NEW technologies for a better mountain FORest 

timber mobilization) [7] was introduced to the Alpine Space program of the European Territorial 

Cooperation. The project aims at enhancing the wood supply chain within the Alpine Space (Alps core 

area and surrounding foothills/lowlands) to improve forest timber evaluation and mobilization using new 

remote sensing technologies such as airborne laser scanning (ALS), also referred to as Lidar. 

When processing ALS remote sensing data for forest applications, area-based approaches [8–10] as 

well as single-tree based methods [11–13] can be found in the literature. Area-based methods provide 

statistically calibrated maps of forest stand parameters such as growing stock, stem density, and stand 

height, which are useful for large-area forest inventory and long term management planning. They can 

also be sufficient for harvesting planning in the case of simple forests such as plantations. Meanwhile, 

in complex alpine forests single tree information is highly valuable. Irregular stands are frequent, and 

silviculture is driven by the largest trees [14], which might also be used as intermediate support to 

optimize cable yarding. The spatial distribution of trees and their characteristics (height, species, crown 

size) are required inputs for growth simulation models [15], for the evaluation of the forest protection 
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effect against rockfalls [16], or even to identify trees with high biodiversity value [17]. Field inventories 

(FI) provide the required high level of local detailed information, but the high labor cost as well as 

accessibility constraint advocate for remote sensing solutions. 

To gain such detailed information from ALS data, many studies on single tree detection were carried 

out by the research community [18–23]. Thus, many different methods are available for operational or 

scientific use. To gain deeper knowledge about the performance of different single tree detection 

methods, an international benchmark was carried out from 2005 to 2008 by the European Spatial Data 

Research Organization (EuroSDR), the International Society for Photogrammetry and Remote Sensing 

(ISPRS), and the Finnish Geodetic Institute (FGI). The study was published by Kaartinen et al. [24,25]. 

The benchmark was carried out using homogeneous ALS data and FI data from two study areas in 

southern Finland. A different benchmark based on ALS data from different types of forest was carried 

out in 2012 by Vauhkonen et al. [26] to test six different algorithms under different forest conditions. 

The investigated study areas are located in Norway, Sweden, Germany, and Brazil. Both studies had a 

great influence on understanding the performance of single tree detection based on ALS data. While the 

benchmark of Kaartinen et al. [24] focused on the performance of different methods using quite 

homogeneous dataset from one region, the benchmark of Vauhkonen et al. [26] focused on the effect of 

different study areas and forest types on the detection results of different algorithms. Vauhkonen et al. [26] 

used a very heterogeneous dataset which spans from a plantation of monospecies forest in Brazil to 

natural mixed forests in Europe. 

For the Alps, the previously published benchmark results are only partly applicable as forests in 

Central Europe are different from forests in Northern Europe or Brazil. For this reason, the present study 

focuses on testing ALS-based single tree detection methods established in the Alpine Space. Based on a 

unique dataset covering different study areas, forest types, and structures from different regions in the 

Alpine Space, different methods are tested and analyzed in a clear and reproducible way. The focus is 

on the performance of the methods. Investigations on the effect of the heterogeneity of the ALS data 

(i.e., different point density) on the detection results are not in the scope of this study. To the authors’ 

best knowledge, this is the first benchmark ever performed for different forests within the Alps. This 

study is based on the single tree detection benchmark carried out within the project NEWFOR [7]. 

Detailed results are published in the project’s final report [27]. The presented study summarizes the 

findings of the report and provides a discussion of the results. 

The dataset used in this study is presented in Section 2. Section 3 provides a brief description of the 

tested methods as well as a detailed description of the matching procedure and evaluation of the results. 

In Section 4 results are presented in different levels of information while Section 5 contains the 

discussion. Finally, conclusions are drawn in Section 6. 

2. Data and Materials 

In total eight study areas in five alpine countries were investigated, representing different types of 

forest (Figure 1). For each study area, ALS data as well as detailed FI data were available. The ALS data 

and FI data used in the presented study were made public. The data are published on the NEWFOR 

website [28]. The dataset was somehow representative of the currently available operational data within 

the Alpine Space. This means that the data are heterogeneous as they originate from different sources 
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who acquired the data for different purposes. For example, the ALS data in Austria were collected with 

a focus on a nationwide terrain modeling campaign while the data in Slovenia were acquired with a focus 

on forestry applications. Detailed information about forest parameters is given in Table 1. 

 

Figure 1. Study areas located within the Alpine Space. 

Table 1. Acquisition parameters for the airborne laser scanning data and field inventory data. 

Study Area Country Localization 
Field Inventory Airborne Laser Scanning 

Nr. Plots Total Size (ha) Date Date Density (pts/m2) Sensor 

Saint-Agnan France 44°52' N 5°25' E 1 1.0 2010/7 2010/9 13 Riegl LMS-Q560 

Cotolivier Italy 45°2' N 6°46' E 3 0.4 2012/9 2012/7 11 Optech ALTM 3100

Berner Jura Switzerland 47°9' N 7°4' E 1 0.1 2005 2011/4 5 Leica ALS 70 

Montafon Austria 47°4' N 9°58' E 1 0.3 2009/6 2011/9 22 Riegl LMS-Q560 

Pellizzano Italy 46°18 N 10°46' E 2 0.3 2013/8 2012/9 95–121 Riegl LMS-Q680i 

Asiago Italy 45°49' N 11°30' E 3 0.4 2012/10 2012/7 11 Optech ALTM 3100

Tyrol Austria 47°23' N 11°44' E 3 1.2 2010/11 2008/7 4–10 Optech ALTM 3100

Leskova Slovenia 45°39' N 14°28' E 4 0.8 2008/11 2009/10 30 Riegl LMS-Q560 

2.1. ALS Data 

The ALS data acquisition shows a mixture of different sensors and settings (Table 1). The acquired 

point densities vary from 5 points/m2 in Switzerland up to 121 points/m2 in Pellizzano, Italy. The mean 

flying heights above ground vary from 420 m to 800 m for the different flights. All flights were 

performed under snow-less conditions. 
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2.2. FI Data 

For all study areas, fully calipered plots are available. Parameters such as, for example, stem locations, 

diameter at breast height (DBH), and tree heights as well as information about species composition and 

number of layers are provided for all plots (Table 2). Since the dataset originates from different 

institutions and inventory layouts, the size and shape of the inventory plots as well as the acquisition 

dates are different. Statistical measures are presented in Table 2, while the inventory dates of the FI data 

are presented in Table 1. 

2.2.1. Positioning 

The in situ absolute georeferencing of all plot locations was performed by GNSS measurements. The 

plots in Switzerland and Montafon were georeferenced with a total station or photogrammetry. In a  

post-processing step, each plot location was manually checked and co-registered to remote sensing data. 

To obtain an interpretable best fit of the tree pattern with the ALS Canopy Height Model (CHM), the 

tree pattern was visualized and manually moved in Quantum GIS 2.8.1 [29]. The CHM shows the local 

object heights and can be derived by subtracting the DTM from a surface model. A plot was only 

manually corrected if the initial position from the field survey showed gross errors. After manual  

co-registration, the estimated absolute planimetric accuracy of the plot location is ±2.0 m. 

The stem positions were positioned relative to the given plot location with compass bearing and tape 

or laser range finding. The relative planimetric accuracy of positions varies from ±0.3 m to ±1.0 m, 

depending on the tools used. Vertex systems were used for measuring the tree heights. The vertical 

accuracy is expected to be ±1.0 m. 

2.2.2. Classification 

Four forest types were manually classified by interpreting the height distribution of trees in the FI 

data and considering the given meta-information. The classes are: (1) Single-Layered Mixed forest 

(SL/M); (2) Single-Layered Coniferous forest (SL/C); (3) Multi-Layered Mixed forest (ML/M); and (4) 

Multi-Layered Coniferous forest (ML/C). 
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Table 2. Statistical description of the forest plots. Only the three main species and species representing more than 5% of the stems are indicated. 

Corresponding Latin names: spruce (Picea abies), fir (Abies alba), beech (Fagus sylvatica), Scots pine (Pinus sylvestris), larch (Larix decidua), 

sycamore (Acer pseudoplatanus), elm (Ulmus glabra), and poplar (Populus nigra). The forest class correspond to single or multi-layered  

(SL or ML)/mixed or coniferous (M or C). 

Plot # Study Area 
Plot Size 

(ha) 

Caliper 

Threshold (cm)

Stem 

Density (/ha)

Mean 

Height (m)

Basal Area 

(m2/ha) 

Mean 

Diameter (cm) 

Stand Density 

Index 

Coniferous 

Proportion (%)
Main species Forest Class 

1 Saint-Agnan 1.00 7.5 359 17.1 32.6 30.1 485 56 Fir, beech ML/M 

2 Cotolivier 0.13 4.0 843 18.1 50.5 25.8 889 97 Scots pine, larch, and spruce ML/C 

3 Cotolivier 0.13 4.0 390 16.5 34.3 29.7 514 92 Scots pine and larch SL/C 

4 Cotolivier 0.13 4.0 175 12.9 15.5 24.2 166 59 Larch and sycamore ML/M 

5 Berner Jura 0.10 12.0 340 29.8 67.6 47.7 959 100 Spruce and fir SL/C 

6 Montafon 0.30 10.0 400 13.9 35.7 25.0 401 100 Spruce ML/C 

7 Pellizzano 0.13 5.0 374 25.6 60.1 40.9 823 100 Spruce, larch, and fir SL/C 

8 Pellizzano 0.13 5.0 1870 13.7 68.1 16.7 974 80 
Larch, spruce, fir, sycamore, and 

poplar 
ML/M 

9 Asiago 0.13 5.0 708 23.6 48.9 29.5 921 100 Spruce and fir SL/C 

10 Asiago 0.13 5.0 851 16.9 56.2 23.7 779 80 Spruce, fir, and beech ML/M 

11 Asiago 0.13 5.0 1344 13.9 37.9 16.0 660 28 Spruce, fir, and beech ML/M 

12 Tyrol 0.40 10.0 317 36.7 59.8 46.6 864 100 Spruce SL/C 

13 Tyrol 0.40 10.0 260 22.0 35.3 39.0 530 29 Sycamore, beech, spruce, and fir SL/M 

14 Tyrol 0.40 10.0 390 23.6 50.5 37.0 733 23 Sycamore, beech, spruce, and pine SL/M 

15 Leskova 0.20 10.0 265 22.9 29.1 34.2 439 76 Fir, spruce, and beech SL/M 

16 Leskova 0.20 10.0 185 24.6 27.6 22.0 359 78 Fir, spruce, and beech SL/M 

17 Leskova 0.20 10.0 585 20.6 38.2 25.5 603 47 Fir, spruce, beech, sycamore, and elm ML/M 

18 Leskova 0.20 10.0 460 24.6 54.0 32.7 708 53 Fir, beech and sycamore ML/M 
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3. Methods 

The global workflow for the benchmark consisted of the following steps. For each plot the ALS data 

and rasterized DTMs at 0.5 m and 1 m resolution were provided to benchmark participants. Participants 

applied their fully-automated tree detection algorithms (Section 3.1) in order to output a list with tree 

coordinates and heights for each plot. For each participant, this tree list is compared to the FI data with 

an automated matching procedure (Section 3.2). 

3.1. Methods of Participants 

In total eight methods were applied to the benchmark dataset (Table 3). The tested methods were 

chosen as they are common in the Alpine Space and originate from different countries. Most methods rely 

on local maxima (LM) detection in a rasterized CHM, but also one point cloud-driven method was applied. 

Table 3. Overview of the applied methods. 

ID Participant Name Method Raster/Point Cloud Resolution of Raster (m) Kernel Size (pixel)

1 Irstea LM + Filtering R 0.20 11 × 11 

2 FEM LM + Region Growing R 0.50 5 × 5 

3 SFI LM + Multi CHM R NA 3 × 3 

4 TESAF LM + Watershed R 0.50 3 × 3 

5 SLU Segmentation + Clustering R + P 0.25 - 

6 TU Wien LM 3 × 3 R 1.00 3 × 3 

7 TU Wien LM 5 × 5 R 1.00 5 × 5 

8 UM-FERI Polyn. Fitting + Watershed R 1.00 7 × 7 

LM: Local Maxima with moving window. The full affiliations of the participants are given on the title page. 

3.1.1. Method #1 (LM + Filtering) 

The method [30,31] is based on LM filtering within a rasterized CHM. The algorithm consists of five 

sequential steps: 

1. Calculation of rasterized products (0.2 × 0.2 m resolution) based on the ALS data. The DSM is 

computed by retaining the highest altitude value of the points located inside each pixel. A DTM is 

computed by resampling the provided DTM at 0.5 m resolution. 

2. Non-linear filtering. Void pixels and artefacts in the DSM are removed with a closing filter. A disk 

of radius 4 pixels is used as structuring element. 

3. Lowpass filtering. A smoothing filter, discrete approximation of a Gaussian kernel with  

sigma = 0.3 m, is applied to the DSM. 

4. Maxima extraction. A LM filtering with sliding window of size 11 × 11 pixels is applied to extract 

the LM. 

5. Maxima selection. Pixels that are a LM are retained if the value of the corresponding pixel in the 

CHM is superior to 7.5 m. The CHM is computed as the difference between the non-linear filtered 

DSM and the DTM. 
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The remaining maxima are the final tree top candidates. Corresponding coordinates are the pixel 

centers and heights, which are extracted from the CHM. Algorithm parameters (raster resolution, 

Gaussian kernel, and LM filtering size) were chosen in the framework of a previous study [31], by  

using an automatic training process designed to minimize the trade-off between omission and 

commission errors. 

3.1.2. Method #2 (LM + Region Growing) 

The method [32] exploits both a rasterized CHM and the ALS point cloud with normalized height. 

The CHM is computed by assigning each pixel the value of the 95th percentile of the elevations of the 

first return ALS points. A nearest neighbor interpolation is used for pixels with no corresponding ALS 

data. The following detailed steps are applied: 

1. A low-pass (LP) filter is applied to the rasterized CHM. For the CHM, a spatial resolution of  

0.5 × 0.5 m2 is used. For the LP filter, a window of 3 × 3 pixels is used. 

2. Seed points S s , … , s  are defined using a moving window approach. The central pixel of a 

5 × 5 pixel moving window is a seed point if it is (a) the highest point inside the window and (b) 

higher than 2.5 m. 
3. Initial regions are defined starting from the seed points, and a label map L is defined: L ,  if 

,  is a seed point with index , otherwise L , 0. 

4. Region growing according to the following procedure: 

a. consider a label map point L , 0 and take its neighbor pixels: 

, 1 ; 1, j ; , 1 ; 1, ; 

b. a neighbor pixel ,  is added to the region n if: 

dist , , s Dist 	&	 CHM , CHM s ∗ Perc 	& L , 0  

with Perc ∈ 0, 1 .  
c. iterate over all the pixels L , 0, and repeat until no pixels are added to any region. 

5. From each region, extract the first return ALS points, and apply Otsu thresholding [33] to the 

normalized heights of the extracted points. 

6. Take only the first return ALS points higher than the Otsu threshold and apply a 2D convex hull 

to these points; 

7. The resulting polygons are the final tree crowns. The positions of the trees are defined as the 

position of the highest ALS point inside each crown. The height of the crown is defined as the 95th 

percentile of the first return ALS points inside the crown. 

3.1.3. Method #3 (LM + Multi CHM) 

The method is based on iterative CHM generation and LM detection within a moving window of  

3 × 3 pixels for various CHMs. The method is fully automated and processes the data in two general 

steps, which are (A) sequential identification of potential trees and (B) filtering of the extracted potential 

trees. Step (A): The ALS point cloud is normalized to local heights by removing the terrain trend using 

a DTM. From the normalized point cloud, an initial CHM is created by assigning the 95th height 
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percentile within each raster cell. Based on this CHM, LM are detected and the found positions and 

heights are stored in a database. For the next iteration, points in the uppermost layer of the normalized 

ALS data are eliminated. The “eliminating” layer is defined as a band of 0.5 m below the current CHM. 

Based on the filtered data, a new CHM is created, LM are extracted, and the LM parameters are added 

to the database. This procedure is carried out sequentially until all points are removed from the 

normalized point cloud. 

Step (B): All detected LM in the database are sorted by decreasing heights. The highest LM is 

considered a detected tree. For each following LM, the LM is considered a detected tree if there is no 

detected tree within a 2D distance of 2 m as well as a 3D distance of 5 m. 

3.1.4. Method #4 (LM + Watershed) 

The presented method [34] is based on the method published in Koch et al. [35]. In a first step, a 

rasterized CHM with a spatial resolution of 0.5 × 0.5 m2 is generated from the ALS data. The next 

processing step consists of a CHM surface smoothing using a Gaussian kernel filter. Focal statistics with 

a LM detection algorithm are used to extract potential tree tops from the smoothed CHM. The identified 

trees are then analyzed through a conditional script that considers a minimum distance and height 

difference from the nearest trees in order to identify and delete potential false positives. The coordinates 

of the found tree tops are then used as seed points in a watershed algorithm run on the inverse CHM in 

order to delineate single tree crowns and to generate polygon features with associated information on 

the canopy area. The method is fully automated and has been implemented as a workflow of 

geoprocessing tools within the software ESRI ArcGIS 10.2 [36]. 

3.1.5. Method #5 (Segmentation + Clustering) 

In the presented method [37], the delineation is done by segmentation of a correlation surface model 

followed by ellipsoidal tree model clustering of the ALS data in 3D. The aim of the segmentation is to 

establish one segment for each tree in the topmost canopy layer. The segmentation method is based on 

geometric tree crown models and raster maps with 0.25 m cells. For each raster cell, an ellipsoid surface 

is calculated from different generalized ellipsoids. Correlation coefficients are calculated between the 

height of the ellipsoid surfaces and the height of the ALS data within the horizontal model radius. The 

correlation surface (CS) is defined as the highest correlation coefficient for each raster cell. The CS is 

smoothed and delineated with watershed segmentation. 

The aim of the clustering is to establish one cluster for each tree in the topmost canopy layer as well 

as one cluster for each tree below. The algorithm is based on k-means clustering using ellipsoidal tree 

crown models. The clustering is done in two steps. In the first step, the ALS data are assigned to different 

clusters based on the Euclidian distance between the ALS data and the cluster centers. In the second step, 

an ellipsoid surface is fitted to each cluster and the ALS data are re-assigned to the different clusters 

based on a distance derived from the ellipsoid surface. Two categories of clusters are defined: Fixed 

clusters corresponding to trees already identified by segmentation of the CS and additional flexible 

clusters corresponding to trees below the topmost canopy layer. The top of the clusters is defined as the 

maximum height above the ground of the ALS data assigned to each cluster. The horizontal position of 
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the fixed clusters is defined as the horizontal position of the top of the cluster, while the horizontal 

position of the flexible clusters is defined as the horizontal position of the cluster center. 

3.1.6. Method #6 (LM 3 × 3) 

The method is published in Eysn et al. [38]. First, a DSM is processed based on the ALS point cloud 

using a land-cover-dependent derivation approach [39]. This approach makes use of the strengths of 

different algorithms for generating the final DSM by using surface roughness information to combine 

two DSMs, which are calculated based on (i) the highest echo within a raster cell, and (ii) moving planes 

interpolation. Second, a CHM with a spatial resolution of 1 × 1 m2 is derived by subtracting the DTM from 

the DSM. The base products are derived consistently for all study areas using the OPALS [40] software. 

Finally, the positions and heights of single trees are determined from the CHM using an LM filter based 

on a moving window (MW) approach. If the center pixel of the MW is an LM, a potential tree is detected. 

Only detected positions with a CHM height greater than 3 m are considered. A circular kernel with a 

diameter of three pixels is used (indicator in the assigned name is “3 × 3”). For all detected trees, the 

position and tree height are stored. 

3.1.7. Method #7 (LM 5 × 5) 

The workflow is exactly the same as described in Section 3.1.6. Instead of a circular kernel with a 

diameter of three pixels, a circular kernel with a diameter of five pixels (indicator in the assigned name 

is “5 × 5”) is used for the moving window. 

3.1.8. Method #8 (Polynomial Fitting + Watershed) 

First, a rasterized DSM is derived from the ALS data. A resolution of 0.5 × 0.5 m2 is used if the point 

density is greater than 10 pts/m2; otherwise the spatial resolution is set to 1.0 × 1.0 m2. The height of a 

grid cell is defined by the highest points within the cell, while inverse distance weighting interpolation 

is used for defining the heights of the cells with no contained points. The DSM is normalized to a CHM 

by subtracting a DTM. Morphological opening and closing are performed in order to remove possible 

outliers. Best fitting second-degree polynomials are estimated in the 7 × 7 pixel neighborhood of each 

grid-cell, using the least squares method. Its factors are used to detect concave neighborhoods (potential 

tree-tops). This approach is also known as local fitting surfaces (LoFS) [41]. Watershed regions are then 

estimated based on concave markers. A region-adjacency graph is constructed over the obtained regions. 

Finally, region merging is performed based on geometric attributes of the regions (height, area, and 

shape compactness) with priorities defined by the measured similarity of best fitting polynomials. In all 

the test-cases, the same attribute-thresholds are used for identifying regions (nodes of the graph) that 

were merged. They are defined as follows: Regions with areas smaller than 5 m2 or heights smaller than 

0.2 m are merged under the conditions that the resulting region after the merging does not exceed 150 m2, 

and its compactness does not exceed the value of π. The positions of treetops are defined by the highest 

points of smoothed CHM (Gaussian filter with standard deviation = 1.0 m) within the corresponding 

regions, while the original height of the treetop is used for defining the height of the tree. 
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3.2. Tree Matching Process 

A fully automated tree matching procedure for linking the different detection results to the reference 

FI data is established and applied. Compared to manual interpretation by experienced human interpreters, 

this methodology enables a clear, objective, and reproducible testing. 

3.2.1. Input Data 

The input data for the automated tree matching are: 

1. Resulting single tree data from benchmark participants (hereinafter referred to as “Test”); 

2. Forest Inventory data of the study areas (hereinafter referred to as “Reference”); and 

3. Area of Interest of the study areas (hereinafter referred to as “AoI”). 

3.2.2. Implementation of the Matching Algorithm 

The matching procedure is performed in three general steps (Figure 2). The detailed workflow is 

presented in Figure 3. The matching between Test trees and corresponding Reference trees is 

implemented in Python 2.7.8 [42]. 

 

Figure 2. Basic steps of the tree matching workflow. 

 

Figure 3. Workflow of the matching procedure. 
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3.2.3. Candidate Search 

Initially, all input data inside an AoI are selected for the matching procedure. The AoI is defined by 

the surveyed area within the FI. The Test trees are sorted by tree height and the matching procedure 

starts from the highest Test tree. For a Test tree the restricted nearest neighbor Reference trees within a 

defined neighborhood are determined. Ideally the neighborhood is defined by the crown area of the Test 

tree. As this information is not available, circular buffering is used as the 2D neighborhood. In contrast to 

other methods, which use the nearest neighbor with the smallest 2D or 3D Euclidean distance as a  

match [26,43], only restricted nearest neighbors are matched. This method introduces a neighborhood 

criterion ΔD2D and a height criterion ΔH. Both need to be fulfilled to make a tree a candidate for being 

matched/assigned (Table 4). Additionally, already assigned neighboring Reference trees cannot become 

candidates. ΔD2D checks the horizontal distance between Test and Reference tree, while ΔH checks the 

tree height difference. The thresholds of ΔD2D and ΔH vary depending on the tree height of the Test tree. 

The motive is the following. 

The locations of trees are, in case of a terrestrial survey, measured at the bottom of the stem while 

most detection methods detect the position of the stem at the tree top. If a tree is tilted or shows a curved 

stem, the locations of tree top and the bottom of the stem differ. This effect normally increases with 

increasing tree heights. Therefore, with increasing tree heights the ΔD2D criterion is increased up to a 

value of 5 m. The value of 5 m was chosen to align with the thresholds applied in Kaartinen et al. [24]. 

Additionally, the ΔD2D criterion considers positional errors from the FI survey as well as inaccuracies 

originating from the tree detection. 

The height accuracy of trees measured in a terrestrial forest inventory is believed to be decreasing 

with increasing tree height. Therefore, when comparing a terrestrially measured tree height to an 

automatically detected one, this effect should be considered. This is accounted for by increasing the ΔH 

value with increasing tree heights (Table 4). 

Table 4. Height and neighborhood criteria for the candidate search. HTest: Height of Test tree; 

ΔH: Height difference between Test and Reference; ΔD2D: 2D distance between Test  

and Reference. 

Criterion Height Test Distance Test 

1 HTest ≤ 10 m and ΔH < 3 m ΔD2D < 3 m 
2 10 m < HTest ≤ 15 m and ΔH < 3 m ΔD2D < 4 m 
3 15 m < HTest ≤ 25 m and ΔH < 4 m ΔD2D < 5 m 
4 HTest > 25 m and ΔH < 5 m ΔD2D < 5 m 

The thresholds presented in Table 4 were empirically found by testing different settings on a subset 

of the dataset while visually interpreting the quality of the matching results. The resulting values are 

applied to all datasets within this benchmark. 

3.2.4. Candidate Voting 

Since multiple trees can become candidates in the candidate searching process, the selected candidates 

are ranked depending on their ΔH and ΔD2D value. Starting from the nearest candidate, all other local 
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candidates are tested for a better ΔH. If a candidate shows a better ΔH and its ΔD2D is at a maximum of 

2.5 m greater than the initial candidate’s ΔD2D, the candidate becomes the new best voted candidate 

(Figure 2). The value of 2.5 m (half of the maximum possible ΔD2D) is introduced to spatially limit 

possible candidate jumps. This feature is helpful if candidates are clustered and the best fitting tree inside 

this cluster should be found. 

3.2.5. Candidate Testing 

Since the tree matching process is more than an isolated problem of matching one Test tree against a 

group of Reference trees, all other Test trees in the surrounding need to be considered. This is performed 

by checking the best voted candidate against the surrounding Test trees. If the previously best voted Test 

tree is the closest tree with the best height difference, these two trees are finally matched. 

3.2.6. Products of the Matching Process 

The outputs of the matching process are qualitative and quantitative statistical parameters as well as 

vector layers which can be displayed in a Geographical Information System (Figure 4). The following 

statistical parameters and vector layers are provided. 

Detailed parameters: For each method and plot 

‐ Number of extracted trees NTest and number of Reference trees NRef 

‐ Number of matched trees NMatch and commission errors NCom. NCom+NMatch=NTest 

‐ Extraction rate → Total number (NTest) or rate (NTest/NRef) of extracted Test trees by a method 

‐ Matching (assignment) rate → Total number (NMatch) or rate (NMatch/NRef) of matched trees 

‐ Commission rate → Total number (NCom) or rate (NCom/NTest) of Test trees that could not  

be matched 

‐ Omission rate → Total number (NOm=NRef-NMatch) or rate (NOm/NRef) of Reference trees that could 

not be matched 

‐ HMean → Mean of horizontal modulus of matching vectors (2D vector between Test and Reference) 

‐ VMean → Mean of tree height differences (ΔH between matched Test and Reference) 

Global parameters: Using detailed parameters of multiple plots or methods: 

‐ RMSextr → Root Mean Square of extraction rates  

‐ RMSass → Root Mean Square of matching rates 

‐ RMSH → Root Mean Square of HMean values 

‐ RMSV → Root Mean Square of VMean values 

‐ RMSCom → Root Mean Square of commission rates 

‐ RMSOm → Root Mean Square of omission rates 

The results of the matching process are presented in different levels of information. Exploring the 

detection results at the method level is displayed in Section 4.2. Section 4.3 shows the results for different 

forest types. The overall performance of the benchmark is presented in Section 4.4. 

In addition to the derived statistical values per plot, the matching rates in different height layers are 

derived. The tree matches are sorted to the height layers defined by the intervals (in meters) [2, 5],  
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[5, 10], [10, 15], [15, 20], and [20–∞], which were also used in the benchmark of Kaartinen et al. [24]. 

The matching results in different height layers are derived to get a better understanding of how the 

different methods perform in understory vegetation. 

For all levels of information, the obtained qualitative and quantitative parameters are plotted in two 

different bar graphs. One bar graph focuses on the different rates found in the matching process, while 

the other focuses on the spatial accuracy. An example is presented in Figure 5. 

 

Figure 4. Matching example visualized in Quantum GIS. The detected Test trees (green 

diamonds), Reference trees (red disks), Area of Interest (blue circle), and the matched 

connections (orange lines) are displayed together with a height-coded CHM. 

 

Figure 5. Bar graph examples for detection rates and spatial accuracy. 

3.2.7. Validation of the Matching Procedure 

The results of the automatic matching are validated by visually interpreting randomly selected 

matching results in Quantum GIS 2.8.1 [29]. The output vector layers of the matching process are 
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visualized as an overlay of the CHM. An experienced human interpreter classifies the matching results 

into four classes: Correctly Assigned (True Positive), Correctly not Assigned (True Negative), Wrongly 

Assigned (False Positive), and Wrongly not Assigned (False Negative). Descriptive measures are 

derived and presented. 

4. Results 

All participants were able to apply their method to the provided dataset. All submitted detection 

results were checked using the matching procedure described in Section 3.2. In total, 168 results 

consisting of 10987 detected potential tree positions were investigated. 

4.1. Validation of the Matching Procedure 

A subset of 699 Test trees, randomly selected from the submitted results, was manually interpreted 

and classified. The resulting error matrix and descriptive measures are presented in Table 5. An example 

of a visualized matching result displayed in Quantum GIS 2.8.1 [29] is presented in Figure 4. Nearby 

trees with matching tree heights get correctly connected in most cases. From the validated tree sample, 

only 3% were wrongly treated within the matching procedure. The obtained quality of the matching 

process shows an overall accuracy of 97% and a Kappa of 0.94. 

Table 5. Error matrix and descriptive measures for the matching quality check. 

 Reference—Manual Interpretation 

Matching Result Match No Match Totals User’s Accuracy 
Match 307 8 315 97% 

No match 14 370 384 96% 
Totals 321 378 699  

Producer’s accuracy 96% 98%   
Overall accuracy: 97%  Kappa: 0.94   

4.2. Matching Results at Method Level 

The matching results per method indicate how well a method performed for all study areas. In Table 6, 

the resulting statistical values are summarized. 

The highest extraction rate (RMSextr: 154%) was obtained by Method #6 (LM 3 × 3), while the lowest 

rate was found by Method #1 (LM + Filtering), showing a value of 51%. Regarding the matching rates, 

the highest rate (RMSass: 54%) was found by Method #6. In contrast, the lowest rate was obtained by 

Method #7 (LM 5 × 5). Speaking about incorrect detections, the highest commission rate (RMSCom) with 

a value of 113% was produced by Method #6. The best RMSCom rate with a value of 9% was found for 

Method #1. The highest omission rate (RMSOm) was found for Method #7, which missed 63% of the 

given reference trees. The lowest and therefore best omission rates (RMSOm: 51%) were found for 

Methods #5 and #6. 

In the spatial accuracy section, the best positional accuracy with a RMSH of 1.6 m was obtained by 

Methods #1, #4, and #6. The best height accuracy with a RMSV value of 0.7 m was found for Method #3. 
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Table 6. Summarized detection results per method: RMS of selected indicators for all plots. 

ID Method 
RMSextr. (%) 

Extraction Rate 

RMSass. (%) 

Matching Rate

RMSCom (%) 

Commission Rate

RMSOm (%) 

Omission Rate

RMSH (m) 

Height 

Accuracy 

RMSV (m) 

Planar 

Accuracy 

1 LM + Filtering 51 45 9 59 1.6 0.9 

2 LM + Region Growing 57 43 20 61 1.8 1.2 

3 LM + Multi CHM 101 46 61 57 1.7 0.7 

4 LM + Watershed 86 49 49 55 1.6 1.1 

5 Segment. + Clustering 139 53 95 51 1.7 1.0 

6 LM 3 × 3 154 54 113 51 1.6 0.9 

7 LM 5 × 5 52 41 16 63 1.8 1.1 

8 
Polyn. Fitting + 

Watersh. 
54 44 13 59 1.8 1.1 

Table 7 shows the matching results (RMSass values) in different height layers. For the layers 2–5 m 

and 5–10 m, Method #5 shows the best performance with values of 15% and 17%, respectively, while 

all other methods detected only half or even a quarter of the trees. For the layer from 10 to 15 m, the 

clear lead of Method #5 gets lost as Methods #3 and #6 show comparable values. For the uppermost two 

layers, the performance difference between the different methods is reduced. In the uppermost layer 

greater than 20 m, RMSass values from 66% to 82% are found. 

Table 7. Root mean square of matching rate per method in different heights. 

ID Method RMSass. 2–5 m RMSass. 5–10 m RMSass. 10–15 m RMSass. 15–20 m RMSass. > 20 m

1 LM + Filtering 0% 3% 16% 35% 72% 

2 LM + Region Growing 0% 5% 15% 30% 72% 

3 LM + Multi CHM 0% 3% 32% 46% 68% 

4 LM + Watershed 4% 7% 20% 36% 76% 

5 Segment + Clustering 15% 17% 32% 45% 76% 

6 LM 3 × 3 4% 6% 28% 44% 82% 

7 LM 5 × 5 2% 4% 14% 24% 66% 

8 Polyn. Fitting + Watersh 2% 9% 16% 40% 73% 

4.3. Matching Results by Forest Type 

The detailed matching results by forest type indicate how well the different methods performed for 

different forest types. A graphical preparation of the matching results sorted to forest type is presented 

in Figure 6. In Table 8, the statistical parameters are summarized. 

The highest extraction rate (RMSextr) of 142% was found for single-layered mixed forests, while the 

lowest rate of 55% was found for multi-layered coniferous forests (ML/C). 

For the matching rates, the highest RMSass rate of 86% was found for single-layered coniferous forests. 

The lowest matching rate (47%) was found for single-layered mixed forests. 
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Figure 6. Bar graphs of detection rates and accuracies of the different forest types. 
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The highest commission rate (RMSCom) of 104% was found for single-layered mixed forests. The 

lowest RMSCom rate was found for multi-layered coniferous forests with 22%. 

The highest omission rate (RMSOm) was found for both types of multi-layered forests, with a value of 

65%. The lowest rate was found for single-layered coniferous forests with a value of 37%. 

In the spatial accuracy section, the best positional accuracy with a RMSH of 1.5 m was obtained for 

coniferous forests. The best height accuracy with a RMSV value of 0.8 m was found for multi-layered 

mixed forests. 

Table 8. Summarized matching results by forest type—statistical parameters. Forest type: 

single or multi-layered (SL or ML)/mixed or coniferous (M/C). 

Type Nr. Plots RMSextr. RMSass. RMSCom RMSOm RMSH RMSV

SL/M 4 142% 47% 104% 56% 1.9 m 0.9 m 

SL/C 5 86% 60% 37% 42% 1.5 m 1.1 m 

ML/M 7 74% 38% 45% 65% 1.7 m 0.8 m 

ML/C 2 55% 35% 22% 65% 1.5 m 1.6 m 

4.4. Overall Performance 

In this section, the overall performance of the matching results of all eight methods is put together. A 

graphical preparation of the result is presented in Figure 7. The overall matching rate RMSass shows a 

value of 47%. This means that statistically 47% of all available Reference trees could be successfully 

matched. For the extraction rate RMSext, a value of 95% was found. The commission error and omission 

error show values of 60% and 57%, respectively. 

 

Figure 7. Overall performance of the tested methods. 

5. Discussion 

5.1. Input Data 

For some study areas, the time gap between the ALS flight and the field survey is quite important. In 

the case of a field survey conducted after the ALS flight, the following errors can be expected: 

- false omission errors due to tree growth in diameter (small trees reaching the caliper threshold 

between the ALS and the field surveys); 
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- false commission errors due to tree removal; 

- false commission errors combined with false omission errors due to tree growth in height, which 

exceeds the matching threshold. 

The opposite errors can be expected when the ALS flight is made afterwards. The time gap is two 

years in Montafon and Tyrol and six years in Berner Jura. It is one year or less in the other study areas. 

In mountain areas, tree growth is quite slow so that this factor has a limited impact on the matching 

process. Indeed the height growth of dominant trees during two years is likely to be lower than the 

vertical accuracy, which is already handled by the matching process. Besides, the proportion of trees 

reaching the caliper threshold in between the ALS and field survey is very low, except for young, dense 

stands. In all plots, the mean diameter exceeds the diameter threshold by more than 10 cm. Unless the 

diameter distribution is bimodal, the proportion of trees with a diameter close to the threshold is small. 

In Berner Jura, the forest is a dense, mature stand with no understory, so that the caliper threshold and 

height growth are not an issue. Regarding tree harvesting or mortality, no changes were reported by the 

partners who provided the data. 

The difference in caliper threshold might also influence the matching results. The smallest trees 

represent a minor proportion of basal area but a major proportion of omission errors. Foresters usually 

set the caliper threshold by taking into consideration the inventory objective, the forest structure, and the 

required field effort. In this benchmark, the caliper thresholds were not a posteriori set to the highest value 

(12 cm in Berner Jura) because this would not be suitable to describe some young, dense plots. When 

comparing the detection results at the forest type level, it should nevertheless be taken into consideration. 

Accurate georeferencing of the input data in a pre-processing step is a prerequisite for correctly 

comparing remotely sensed data with FI ground truth data. Three main error sources exist when 

comparing these data. These error sources are (A) positional errors due to inaccurate measurements 

(georeferencing); (B) irregularities of the local forest (i.e., tilted trees, complex crowns); and (C) errors 

originating from the detection algorithm. To minimize error source A, forest inventory data is ideally acquired 

by using a survey grade GNSS system or a total station. A positional check by manually co-registering the 

inventory data to the remote sensing data in a post-processing step is necessary in most cases. Automated 

co-registration methods [44–46] can help to support the co-registration process. The reported 

performance of automated methods varies from 68% up to 92% and depends mainly on the input data 

and the variability of the forest stands [45]. In the presented study, error A was minimized by using 

manually co-registered datasets, with an estimated planar accuracy of ±2.0 m. and ±1.0 m for the vertical 

accuracy. The errors B and C are handled within the matching procedure by allowing flexible matching 

connections with a search radius depending on tree heights. The used FI data are heterogeneous due to 

different acquisition guidelines and methods. Therefore the data can be considered as imperfect 

compared to a local standardized FI. However, imperfect data should not have disadvantaged one of the 

detection methods as all participants faced the same conditions. 

The presented matching procedure enables interpreter-independent and reproducible results in a short 

amount of time. The automatic matching took a few minutes while the manual interpretation within the 

validation process of the subset took several hours. The Overall Accuracy of 97% indicates that the 

matching procedure worked sufficiently for the presented dataset.  
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5.2. Matching Results 

In general, the vertical structure of the forest (vertical distribution of tree heights) seems to have a 

major impact on the detection/matching results of the different methods. This finding is also reported by 

Vauhkonen et al. [26]. The more vertically distributed the trees are, the lower the matching rates are. 

The matching rates in different height layers indicate that especially in the lower height layers more 

advanced methods like point cloud-driven 3D clustering (Method #5) can detect more trees than methods 

that rely on local maximum detection based on a rasterized canopy height model. This finding was also 

reported in the benchmark study of Kaartinen et al. [24]. Method #5 achieved the highest number of 

small trees extracted. 

Matching results combining a high matching rate with a low commission rate indicate a good 

matching result. The best detection result was obtained within the study area of Berner Jura, which 

consists of an old forest stand with high trees and no understory vegetation. The lowest detection result 

was obtained within plot #5 in Pellizzano, which consists of a multi-layered forest with a high amount 

of trees in different height layers. Only 15% of trees smaller than 10 m could be correctly extracted by the 

best performing method. In a summarized view, the results show that multi-layered forests are challenging 

for all tested methods. Maybe new methods as e.g., presented in Vega et al. [47] or Kandare et al. [48] will 

help to improve this issue in the future. Vega et al. [47] reported an overall performance of 75% for 

mixed multi-layered mountainous forest in the French Alps, with a 58% detection rate in the dominated 

tree layer. 

Regarding the detection of small trees, it can be assumed that small trees in subdominant layers 

theoretically get mapped more efficiently at a higher ALS point density. This can be linked to a 

potentially higher canopy penetration rate. Kaartinen and Hyyppä [25] and Reitberger et al. [49] 

conclude that the laser point density has less impact on the individual tree detection. In contrast Wallace, 

Lucieer, and Watson [43] conclude that high point densities are more significant for single tree detection 

than the method used. Wallace et al. studied a very young, planted stand of Eucalyptus trees using  

high-resolution UAV Lidar data, which is not comparable to the dataset of the Alpine Space. Therefore, 

it is assumed that the different point densities given in the presented study should not significantly 

influence the detection results. Within the pilot area Pellizzano, a maximum ALS point density of 121 

pts/m2 is given and the inventory data show a high vertical distribution of trees. Even at this high point 

density, only the worst detection result of all tested areas could be obtained. All study areas have point 

densities higher than 10/m2, except Berner Jura and Tyrol. Both of these have plots of single-layered, 

mature stands so that the smaller point density is probably not a limiting factor for tree detection. 

However, investigating the effect of different point density on the detection results was not in the scope 

of this study. 

5.3. Matching Results per Method 

The best ratio between a high matching rate and a low commission rate was found for Method #1, 

which consists of a local maximum search in a canopy height model using a moving window approach. 

The fact that the algorithm parameters were automatically optimized for this purpose on an independent 

dataset seems to be an advantage compared to methods where parameters are set according to the user 
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appreciation. In the lower height layers up to 10 m tree height, only up to 3% of the extracted trees could 

be correctly matched. Since the method relies on a rasterized canopy height model and filtering of trees 

smaller than 7.5 m, this rather low value was expected. For the spatial accuracy, the obtained values for 

the location are comparable to the results of the other tested methods. For the height component, the 

second best value was achieved with a RMS value of 0.9 m, which is comparable to the values obtained 

for the best models in the benchmark of Kaartinen et al. [24]. 

Method #2 shows comparable matching rates to Method #1, but with a commission rate twice as high. 

In the lower height layers up to 10 m tree height, only up to 5% of the extracted trees could be correctly 

matched. In contrast to Method #1, trees down to a height of 2.5 m could be detected, which might lead 

to the slightly higher percentage value. However, the method is based on rasterized ALS data and 

therefore the rather low matching rate in the lower height layers was expected. The spatial accuracy of 

the method is comparable to the results of Method #1. 

High commission rates in the results of Methods #3, #5, and #6 indicate that these methods tend to 

over-perform, which means they show high commission rates. Methods #3 and #5 are based on 3D 

operations in multiple canopy height models or directly in the 3D point cloud, while Method #6 is based 

on local maximum detection in a canopy height model, which uses a small local maxima kernel  

(3 × 3 pixels) and no preliminary smoothing. The small kernel tends to find local irregularities in the 

canopy height model and since these irregularities can be located even inside a single tree crown, the 

small kernel tends to detect too many potential trees. The result is the highest commission rate within 

this benchmark. The alternative Method #7 shows better results in terms of commission rate as the rate 

of the 5 × 5 kernel is seven times lower than the one from the 3 × 3 kernel. Methods #3 and #5 seem to 

be too sensitive in the detection process and the 3D clustering especially tends to detect multiple trees 

within a given single tree crown. Beside the fact of high commission rates for these methods, Method 

#5 shows up to 17% of correctly matched trees in the lower layers up to 10 m tree height. Compared to 

other methods, this is clearly the best result. Method #3 shows the best height accuracy with a RMS 

value of 0.7 m. Both Method #7 and #3 show the lowest matching rates in the uppermost height layer 

with trees taller than 20 m. In total, Method #7 shows comparable results to results of Method #1 and is 

counted as one of the best results within this benchmark. 

Method #4 shows a relatively high matching rate of 49% (RMS) but in contrast the commission rate 

is high. This indicates that the method found many trees that could not be linked to the reference data. 

In the lower layers below 10 m tree height, up to 7% (RMS) of the available reference trees were 

correctly matched, while up to 40% (RMS) of the detected trees are sorted to commission errors. The 

rather low matching value can be explained by the methodology. It uses a smoothed rasterized canopy 

model, which follows the upper canopy and therefore the detection rate of smaller trees in subdominant 

layers is believed to be low. In the highest height layer with trees taller than 20 m, a matching rate of 

76% (RMS) could be obtained, which is one of the highest values in this benchmark for this height class. 

The spatial accuracy of the method is comparable to that from Method #1. In general, the spatial accuracy 

of all methods does not differ very much. 

Method #8 shows a high matching rate of 44% paired with a low commission rate of 13%. Based on 

these values, the results of Method #8 are close to the results of Method #1 and among the best within 

this benchmark. In the lower levels with tree heights up to 10 m, the method obtained a matching rate of 

up to 9%, which counts, together with Method #4 and #5, as the best obtained results. In general, a 9% 
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matching rate in lower height intervals is, compared to the other methods, a good result, but from an 

overall perspective such a low detection rate is unsatisfying. Like other methods that rely on maximum 

search in a rasterized canopy height model of the uppermost canopy, the low rate can be explained by  

the methodology. 

5.4. Matching Results per Forest Type 

The class of single-layered coniferous forests shows the best results of all tested classes as a high 

matching rate of 60% combined with a low commission rate of 37% is given. This result seems feasible 

as coniferous trees have, in most cases, a clearly defined tree crown shape. This means that the tree top 

appears as a clear peak in the canopy height model. Since most of the tested methods within this 

benchmark rely on local maximum detection on the canopy height model, the good result for  

single-layered coniferous forests was expected. The best performing methods for this forest type were 

Methods #1, #3, and #4. 

The class of multi-layered coniferous forest as well as the class of multi-layered mixed forest show 

the lowest matching rates in this benchmark. Only a matching rate of up to 38% (RMS) could be obtained. 

The commission rate of the multi-layered mixed forest is twice as high as the rate found for the  

multi-layered coniferous forest, which shows a value of 22% RMS. The low matching rate can be 

explained by the methodology of the tested methods. Trees in lower layers are challenging for all tested 

methods. The higher commission rate for the multi-layered mixed forest can be linked to more complex 

crowns for deciduous trees, which results in over performing detection results. The best results for the 

multi-layered coniferous forest were obtained by Methods #2, #4, and #10. For the multi-layered 

deciduous forest, the best results were obtained by Methods #1, #4, and #8. 

The single-layered mixed forest shows a matching rate of 47%, which is the second best matching 

rate for the classified results. In contrast, a very high commission rate of 104% is given. The high rate 

can be explained by the fact that deciduous tree crowns tend to be more complex than coniferous ones. 

Single tree crowns may consist of multiple local peaks in the canopy height model, which may be 

correctly detected as local maximum but do not represent the tree stem. The best performing methods 

for this forest type are Methods #1 and #8. 

In general, it can be seen that the single-layered forest types show better results than the multi-layered 

ones. This was expected as forest structure has a significant influence on the results. Between the  

single-layered coniferous and mixed class, a considerable difference in the matching rates as well as 

commission rates is noticeable. This confirms the findings of Vauhkonen et al. [26], who tested the 

performance within coniferous and deciduous plots in Germany. 

5.5. Overall Performance 

The overall performance brings together all matching results from all tested methods. An overall 

matching rate of 47% (RMS) was found. This value aligns with the benchmark results presented in 

Kaartinen et al. [24], as well as with the results for the study areas in Germany and Norway in the 

benchmark published by Vauhkonen et al. [26]. In contrast, novel methods such as, for example, a purely 

point cloud-driven method presented in Vega et al. [47] enable a higher overall performance, i.e., 75% 

for mixed multi-layered mountainous forest in the French Alps. 
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The overall best performing methods are #1, #2, #7, and #8. The other four tested methods show 

commission errors that are too high. For the spatial accuracy, a horizontal accuracy of 1.7 m (RMS) and 

a vertical accuracy of 1.0 m (RMS) could be obtained. These values are comparable to other previously 

carried out benchmarks. The performance of the different methods differs more for the tree detection 

than for the extracted tree heights. This was also reported by Vauhkonen et al. [26]. 

5.6. Perspectives 

The trade-off between omission and commission errors turns out to be a critical point regarding tree 

detection. Some detection methods are probably intrinsically more efficient because they are able to 

extract more relevant information from the point cloud, as is expected from point cloud-based methods. 

However, as exemplified by Methods #6 and #7, which differ only by the LM kernel size, it turns out 

that the choice of algorithm parameters such as raster resolution, kernel size, and horizontal or vertical 

exclusion thresholds may have a major impact on detection results. From the image processing point of 

view, extracting trees is basically separating the signal from the noise. Depending on the forest structure 

(and on the caliper threshold, which defines the tree object) and on the acquisition parameters, the filters 

required for tree extraction have to be chosen or at least tuned specifically. In order to improve the 

detection algorithm available for forest practitioners, it seems important to A) have datasets that allow 

us to test the robustness of algorithms on a wide range of forest structures, and B) design algorithms able 

to optimize their setting, either based on internal (Lidar itself) or external (tree allometry) data. For the 

comparison of results, an automated matching procedure like that presented in this paper is of high 

relevance. Moreover, the choice of a trade-off criterion between the omission and commission errors 

would make comparisons easier, but it has to be application-oriented. 

6. Conclusions 

This study demonstrated that Forest Inventory data can be automatically matched to single tree 

detection results obtained from airborne laser scanning data. Furthermore, eight single tree detection 

methods were tested based on a unique dataset of different forest types originating from eight areas 

within the Alpine Space. The proposed method for automatically matching forest inventory data and 

remotely sensed data worked efficiently. In general, all tested methods achieve comparable results for 

the matching rates, but do differ for the extraction rates and omission/commission rates. The tree 

detection rates show a higher variation than the estimated tree heights. A method based on local maxima 

detection within a canopy height model using variable-sized moving windows is rated as the best 

performing algorithm. Complex multi-layered forests were challenging for all tested methods. A point 

cloud clustering-based method gained the best results for trees in subdominant layers, which is rated as 

an advantage over raster-based methods. The best detection results were obtained for single-layered 

coniferous forests. 

Future studies should investigate the effect of different point densities on the detection results. 

Multiple datasets of the same area acquired with different flight parameters (i.e., viewing angles, heights 

above ground, footprint size) would be necessary to perform this analysis robustly. Such datasets are 

rarely available. Automated absolute georeferencing between FI data and ALS data (co-registration) as 

well as an automated classification of FI plots in different forest types (i.e., single-/multi-layered forests) 
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based on the ALS data would help us to overcome the manual steps performed in the presented study. 

Finally, the performance of novel, point cloud-driven single tree detection methods [47] should be tested 

on the unique dataset from the Alpine Space presented herein. 
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