
https://hal-sde.archives-ouvertes.fr/hal-01076468
https://hal.archives-ouvertes.fr


TECHNICAL ARTICLE: PART OF A SPECIAL ISSUE ON FUNCTIONAL�STRUCTURAL
PLANT MODELLING

Automatic identification and characterization of radial files
in light microscopy images of wood

Guilhem Brunel1,2,*, Philippe Borianne2, Gérard Subsol3, Marc Jaeger2 and Yves Caraglio2

1CIRAD � UMR A51 AMAP, France, 2University of Montpellier 2, France and 3LIRMM � CNRS,
University of Montpellier 2, France

* For correspondence. E-mail guilhem.brunel@cirad.fr

Received: 31 October 2013 Returned for revision: 9 January 2014 Accepted: 31 March 2014 Published electronically: 2 July 2014

� BackgroundandAims Analysis of anatomical sections of wood provides important information for understanding
the secondary growth and development of plants. This study reports on a new method for the automatic detection and
characterization of cell �les in wood images obtained by light microscopy. To facilitate interpretation of the results,
reliability coef�cients have been determined, which characterize the �les, their cells and their respective measure-
ments.
� Methods Histological sections and blocks of the gymnosperms Pinus canariensis, P. nigra and Abies alba were
used, together with histological sections of the angiosperm mahogany (Swietenia spp.). Samples were scanned
microscopically and mosaic images were built up. After initial processing to reduce noise and enhance contrast,
cells were identi�ed using a �watershed� algorithm and then cell �les were built up by the successive aggregation
of cells taken from progressively enlarged neighbouring regions. Cell characteristics such as thickness and size
were calculated, and a method was developed to determine the reliability of the measurements relative to manual
methods.
� Key Results Image analysis using this method can be performed in less than 20 s, which compares with a time of
approx. 40 min to produce the same results manually. The results are accompanied by a reliability indicator that can
highlight speci�c con�gurations of cells and also potentially erroneous data.
� Conclusions The method provides a fast, economical and reliable tool for the identi�cation of cell �les. The reli-
ability indicator characterizing the �les permits quick �ltering of data for statistical analysis while also highlighting
particular biological con�gurations present in the wood sections.

Key words: Functional�structural plant modelling, image processing, microscopic wood images, radial cell �le,
reliability coef�cients, cellular structure, light microscopy, Pinus canariensis, P. nigra, Abies alba, Swietenia.

INTRODUCTION

Tree development is the result of both primary growth, involving
the elongation and branching of the axes, and secondary growth,
consisting of their thickening over time. Many approaches have
been developed to study the structural and functional aspects of
plants, particularly when used to address issues of carbon seques-
tration and wood energy. These approaches, however, whether
examining secondary growth and its inter- or intra-speci�c var-
iations, or the relationships between primary and secondary
growth, are often based on only fragmentary studies due to the
fact that data acquisition is often costly (Rossi et al., 2009).

The description of primary growth can be more or less
extensive thanks to retrospective approaches (Barthe·le·my and
Caraglio, 2007; Krause et al., 2010) while dendrochronological
studies are generally performed only on portions of the ligneous
plane (coring). Here, the more detailed the observation level,
the shorter the part of the ligneous plane described by the data.
Secondary growth originates from cambial activity, the source
of the wood (xylem), and thus from the different cells that make
up the xylem (ligneous plane).

The biological typing (Lachaud et al., 1999) of cells can be
approached byexamining their shape, size and spatial distribution,

independent of theirorganization. The �ndings can then beused to
determine theanatomical changes that characterizexylem produc-
tion and differentiation phases (Thibeault-Martel et al., 2008;
Gue·don et al., 2013) without truly explaining wood production
or growth mechanisms.

Indeed, the mechanisms of cambial growth can be understood
only by studying cell pattern rhythmicity and cell disruption or
modi�cation in space and time. A spatio-evolutionary perspective
must thereforebe introduced todiscussthese issues.Environmental
�uctuations and their effects on the differentiation of wood ele-
ments (originating from the divisions of cambial cells) require
production to be monitored in speci�c cellular organizations.
Here, for the sake of simplicity, we consider two organizations:
�rst, the growth ring that re�ects cell production over a given
time (Heinrich, 2007) and, secondly, the cell �le that re�ects
the activity of the initial cell over time (Rozenberg et al., 2004).

Nicolini et al. (2003) highlighted the importance of secondary
growth organization by studying cell motifs, spatial rhythmicity
and the variability of successive growth rings to characterize
plant space occupation strategies. This approach does not,
however, address the mechanisms of cell differentiation or the con-
struction of cell motifs and structures, which are time-dependent
mechanisms. The precise, dynamic monitoring of cambial
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production at the initial cells (Rossi et al., 2006; Rathgeber et al.,
2011) is technically limited to a small portion of the ligneous
plane. Thus, the studyof cell �les, which result from cambial pro-
duction and its local and overall �uctuations, is a promising ap-
proach to understanding the establishment, differentiation and
temporal rhythmicity of cells (Gindl, 2001).

Biological questions concerning interactions between the de-
velopment and growth of trees under environmental constraints
(Moe¤ll and Donaldson, 2001) may be addressed by: (1) determin-
ing the contribution made to conduction and storage by the differ-
ent cell types in the ligneous plane; (2) determining the variability
of cell characteristics (vascularization elements, �bres, ray cells,
vertical parenchyma); and (3) breaking down this variability by
identifying that which can be attributed to ontogeny and that
which can be attributed to an environmental response.

To interpret and compare internal observations with observa-
tions of external morphology, various parts of the plant�s architec-
ture must be studied simultaneously (Barthe·le·my and Caraglio,
2007). In particular, observations should distinguish between the
constitutive anatomical features of the plant (i.e. trunk, branch)
over time, and generate a suf�ciently large sample for the use of
statistical tools.

However, these biological questions and their associated
characterizations are highly constrained due to cumbersome
protocols and the dif�culties inherent in acquiring large datasets.
Indeed, a precise understanding of growth mechanisms and their
modelling has mostly been achieved by searching for invariants
in large observation samples, thus restoring intra- and inter-
species variability.

Progress made in the preparation of complete cross-sections of
axes for ligneous plane observation from a macroscopic to a
microscopic level without using histological sections (polishing),
combined with modern image acquisition equipment (stage for
programmed movements, vibratome, etc.), today provide access
to quality information on broad areas of the ligneous plane.
This technology, however, is hampered by its limited ability to
manage and process data. Acquiring a slice 10 cm in diameter
at × 200 magni�cation requires a mosaic of about 1000 images.
On average, each image contains 500 cells and the manual evalu-
ation of each image requires about 40 min using an image editor
(ImageJ, Photoshop). Cellular arrangements are identi�ed by
studying several successive rings in several growth units, and
here the numberof images required is too large for manual process-
ing. Usually, counts are made on three �les per section (Rossi et al.,
2006) to save time and reduce costs.

Automating the study of cell �les would make it easier to es-
tablish tighter links to the functional and ecological aspects of
the species by having a better appreciation of the range of phe-
nomena variability. Wood provides a continuous record of all
the developmental changes undergone by a tree (ontogeny, the
least known) and a record over time of its environment (dendro-
chronology and dendroclimatology, the most studied). One par-
ticular concern with automated methods is the need to assess and
quantify the reliability of their results. This means establishing
reliability indicators for the results produced.

The automated identi�cation of cell structures is one of the
new challenges to be met in studies of the structural biology of
plants (Quelhas et al., 2011), and requires a multidisciplinary
approach. In matters of (bio)-imaging, cell segmentation is a
problem that has been widely discussed in the literature

(Baggett et al., 2005; Fourcaud et al., 2008). For example, Park
and Keller (2001) combined four conventional image analysis
approaches to segment cells: watershed algorithm (Vincent
and Soille, 1991), snakes (McInerney and Terzopoulos, 1999),
multi-resolution analysis (Jeacocke and Lovell, 1994) and
dynamic programming. In the speci�c context of wood, cell seg-
mentation is generally combined with the determination of cell
type, i.e. its biological characterization. For example, Wang
et al. (2008) and Marcuzzo et al. (2009) sorted cells using the
support vector machines (SVM) classi�cation. This is a super-
vised incremental training method where the major challenge
is to create the training data set that is suf�ciently representative
to recognize the intrinsic variability of individuals.

Instudiesofcellularorganization,certainauthorshaveusedgeo-
metric models based on topology. This also provides a description
of the cell�s surrounding environment. For example, the studies of
Jones and Bishof (1996) and Kennel et al. (2010) were based on a
graph that was orientated so as to extract cell �les from images of
gymnosperms. More speci�cally, cells are extracted by applying
the watershed algorithm to the converted greyscale image. The
adjacency graph of the cells is then built from the basin diagram.
Cell typing obtained by the supervised classi�cation method
(CART; Breiman et al., 1984) can thus be used to extract tracheid
alignments from the graph. This method is sensitive to the re-
inforcement training used to classify biological types.

From a technical perspective, the searches we conducted
failed to �nd any software solutions suitable for the automatic
identi�cation of cell �les. Specialized commercially available
tools such as WinCell (Hitz et al., 2008) are intended for use in
the analysis of wood cells, but do not recognize or characterize
cellular organizations. Users have only limited or no possibility
of improving their functions. By contrast, commercial platforms
such as Visilog (Travis et al., 1996) offer a rich environment, but
are not suf�ciently specialized, because although it is possible to
create macro functions (by assembling and con�guring basic
ones), it is impossible to add new basic functions.

Open source platforms such as ImageJ (Clairet al., 2007) are an
interesting option as their source codes may be enriched by special
functions, and specialized macros may be developed. At the same
time, they facilitate method sharing and dissemination. It is thus
possible to develop new functions for automated processing. We
thus preferred this solution for our technical development.

In this paper we describe a cell �le detection method that is
based solely on cell geometry (size and shape), not on biological
type, thus avoiding the bias and uncertainty inherent to the cre-
ation of reinforcement learning representing biological variabil-
ity. Reliability indices are employed to determine the accuracy
of the results produced for both the geometrical parameters char-
acterizing the cell and its components (lumen and wall), and the
identi�cation of cellular alignments. Results are presented from
application of the process to real images of wood slices, obtained
by a plugin implementation in ImageJ (Schneider et al. 2012), a
Java-based image analysis freeware.

MATERIALS AND METHODS

Study species

For the purposes of our study we examined histological sections
and blocks of gymnosperms, speci�cally Pinus canariensis,
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P. nigra and Abies alba. Results were extrapolated to angios-
perms by studying histological sections of Khaya ivorensis.

Any detailed studyof cell typology requires an examination on
multiple planes. In our study, we therefore considered only three
biological cell types: tracheids, which provide support and are
the main cells present in the radial cut; vessels; and rays. For
each cell we calculated its circularity, height, wall thickness,
and surface area of the cell and its lumen.

Preparation protocol and microscopy

Two preparation methods were evaluated to verify the general
applicability of the processing and analytical techniques used.

The conventional preparation method for the study of cell �les
consists of creating a mosaic of histological sections from wood
cores. In practice, this approach does not guarantee the juxtapos-
ition of samples or tissue integrity. It is also relatively time-
intensive as it takes approx. 1 h to prepare a mosaic of ten stained
histological sections. Thus, this protocol is better suited to the
study of relatively smaller areas of observation. The study of
larger areas relies instead on the observation and measurements
of discs of sanded wood. We thus developed a protocol that
combined the sanding and polishing of wood discs to facilitate
automated measurements on the entire ligneous plane.

Thin histological cuts. Producing a single cross-section of
20�25 mm thickness using a vibratome takes approx. 5�15 min
depending on the case. The sections are then stained to increase
the wall/lumen contrast, with the dye binding to the wall. The
cleaningandstainingstepstake 30 min.Thefullprotocol therefore
requires approx. 1 h per cut. This method is able to produce histo-
logical section mosaics on several rings, depending on core
dimensions.

Sanded wood discs. Samples were taken from pine felled in April
2013. Wood discs (about 2.5 cm thick) were cut from the centre
of each growth unit. At this stage, it is important, although not
always easy, to obtain samples in which the two sides are as par-
allel as possible. Samples were dried outdoors in the shade, shel-
tered from the rain, from May to July. A belt sander (Festool BS
105) was then passed over the samples using successively �ner
grit paper (60, 120 and 220).

The following equipment was used for the pre-polishing
and polishing steps: a semi-automatic polisher �tted with a
30-cm-diameter magnetic plate (Struers); abrasive discs (Sic
foil or paper depending on the grit used); wool polishing cloth
(MD MOL); alcohol-based lubricant (DP blue); and diamond
spray (spray DP). The discs were placed in the sample holder

and �xed with double-sided tape. Disc processing is outlined
in Table 1.

After the last step, the samples were removed from the holder
and rinsed with deionized water. To avoid damage, care was
taken not to touch the fragile polished side of the samples. To
protect from dust, the samples were wrapped in a laboratory
�bre paper. Images were acquired the next day.

Scanning. Scanning, which is performed within 24 h of sample
preparation, consists of producing a mosaic of images represent-
ing the observation area. The time between sample preparation
and scanning must be as short as possible such that the natural
drying of the wood does not produce microdeformations affect-
ing the uniformity or ��atness� of the surface, thus compromising
the sharpness of the images produced.

In our study, the transverse planes were scanned byan Olympus
DP71 LCD camera mounted on an Olympus BX51 microscope
equipped with a movable stage, thus allowing, by gradual move-
ments of the slide, the creation of a mosaic of images.

A magni�cation of × 200 was used to obtain signi�cant cell
surfaces while maintaining a large enough study area.

The position of the mosaic image is determined by the x and y
movements of the stage. Here, the maximum viewing area was
10 × 10 cm2, corresponding to a mosaic of about 1500 images.
Each image was de�ned by 1600 × 1200 pixels, which were
encoded on 3 bytes in the RGB system. The images may be
blurred locally or peripherally due to optical distortions or varia-
tions in sample thickness.

Image analysis

The image analysis process followed a three-step sequence,
starting with cell identi�cation, then cell geometrical character-
ization and �nally �le detection. Cell typing and a determination
of the reliability of the results obtained are detailed below.

Each image processing step was itself divided into several
tasks, as described below.

Cell segmentation. This �rst step aimed to identify the different
cells in the original image. It was divided into three tasks:
image noise reduction preprocessing, contrast enhancement by
�ltering and colour to greyscale conversion, and cell identi�ca-
tion from basins generated by the watershed algorithm.

Image noise reduction. At the magni�cations used, the images
acquired showed �salt and pepper�-type noise, caused by heat
from the lamp. This noise was attenuated using a median �lter
applied on a 5 × 5-pixel neighbourhood.

TABLE 1. Sanded wood discs protocol.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Abrasive type Sic Foil 320 Sic Foil 500 Sic Foil 800 Sic Foil 1200 Sic paper 4000 MD MOL
Disc rotation (r.p.m.) 150 150 150 150 150 150
Rotating sample holder 150 150 150 150 150 150
Direction of rotation � � � � � �
Vertical force (N) 120 120 120 120 120 120
Duration of step (min) 2 2 2 2 2 5
Liquid lubricant Water Water Water Water Water DP blue
Abrasive product DP spray P3
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Contrast enhancement. The micrographs showed alternating light
areas, corresponding to the lumen, and dark areas, corresponding
to the wall. To enhance the contrast between different areas in the
image and highlight the walls and lumens, we used a Difference
of Gaussian (DoG) operator (Haddad and Akansu, 1991). This
�lter acts as a band-pass, only letting through the frequency
range corresponding to the lumen and �ltering out the noise
present at higher frequencies. The �rst image was built from a
slightly blurred Gaussian �lter application with smoothing
factor being selected close to average wall size. The second
imagewas built from a heavily blurred Gaussian �lterapplication
with smoothing factor tenfold that used for the �rst image. The
heavily blurred image was then subtracted from the slightly
blurred image. These operations were performed on colouir
images, with negative values being set to zero. This process
boosts the intensity of the lumen while substantially reducing
wall intensities.

From colour to greyscale images. The choice of colour system
is an important aspect of colour image processing. Several
studies have shown that the �best system� depends on image
contents (Busin et al., 2009). For our study, we preferred the
RGB system in which colours correspond to the wavelengths
that stimulate the three cones of the human eye. This system
can de�ne all the hues but not all the saturations.

However, if the watershed algorithm is to be applied, a colour
to greyscale image conversion is required, given that our inten-
tion was to avoid basing automated processing on human percep-
tion. Instead to use the relative luminance formula, which give
less weight to blue and moreweight to red and green components,
we preferred to apply a simple average of the three colour
channels.

Cell extraction and identi�cation. Cell extraction from the gray-
scale imagewas based on thewatershed algorithm. This powerful
algorithm (Vincent and Soille, 1991) considers the image as
a landscape, with altitude is given by grey values. Here, the
lower points in the topographic relief, corresponding to dark
regions, act as catchment basins (as if a drop of water were
to fall onto the topography) and are separated by a watershed,
represented by the lighter pixels.

These catchment basins are thus obtained from a partition of
the image. The crest lines constitute the intercellular border,
corresponding to the middle lamella (Fig. 1C). The watershed
algorithm is known to produce an exaggerated partitioning,
resulting in lines that abnormally intersect cells. This phenom-
enon is due to the fact that each local minimum in the image pro-
duces a potential catchment basin. Typically, two methods are
used to reduce or even eliminate the exaggerated partitioning:
a priori �ltering of the local minima values (Gilmore and
Kelley, 1995) used to initialize the watershed, or a posteriori
merging of similar adjacent basins in terms of both mean and
minimal intensity (Beucher, 2012). Neither method guarantees
perfect cleaning of the watershed lines. Here, we propose a
method based on the biological observation that the lumen of
the cell is empty. Hence, if a watershed line crossing a lumen
shows a characteristic intensity pro�le whose overall maximum
is greater than a threshold experimentally set from average lumen
values, then it will be deleted. Conversely, a watershed line near
the middle lamella contains only values below the low-intensity
threshold (Brunel et al., 2012).

After cleaning the watershed. An adjacency graph of the basins
was used to describe the neighbouring relationships between
the different basins. This is a simple graph conventionally
de�ned by a set of vertices and a set of edges. More precisely,
each edge of the graph connects the geometric centres of two
neighbouring basins, i.e. incidents at the same crest line.

Geometric properties at the cell scale. Each cell was then indivi-
dualized. Cells are composed of two anatomical structures: the
wall and the lumen. On the original colour image, these struc-
tures are automatically divided into two classes by an unsuper-
vised two-means classi�cation algorithm (Forgy, 1965), also
equivalent to Otsu�s thresholding operator. The bright pixels
class corresponds to the lumen and the dark pixels class to the
wall. Surface areas are calculated simply by counting the pixels
in each class.

Cell geometrical properties at larger scales: the global cell
arrangement orientation. When considering a basin in the adja-
cency graph, it can be seen that the cells are arranged in a stag-
gered manner, and the edges of the graph are orientated in
three directions. At the full graph scale, the most frequent orien-
tation corresponds to the cellular alignments. This is de�ned as
the main direction. We will use the method originally described
by Jones and Bishof (1996) and reused by Brunel et al. (2012),
studying the distribution (via a histogram) of the angle that
each edge of the adjacency graph forms with the horizontal.
In theory, due to the arrangement of the cells, the distribution
should be trimodal and show at least one marked amplitude
mode. The mode of the greatest amplitude indicates the most
represented orientation in the adjacency graph, i.e. the main

A B

C D

FI G. 1. Cell individualization for a Mahogany cross section. (A) Native image.
(B) Watershed segmentation results with crest lines (in green) crossing the lumen.
(C) cleaned watershed image with crest lines replaced by curvilinear edges (in
yellow). The edges correspond to the middle lamella while the geometric
centre of the watershed (extra points in yellow) correspond to the biological
cells. (D) Dual watershed image, in which the red lines connect each cell
centre with its neighbours (adjacency graph). Note that the degree of connections

is greater than 4, showing the staggered pattern of the cells.
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orientation of the �les (Fig. 2). This mode is retrieved by search-
ing the histogram maximum amplitude.

File detection

The process used to identify cell �les in an image is based on
the following assumptions: (1) �les are pair-wise alignments of
similar cells (in terms of size and shape) and (2) cell alignments
are independent of the orientation of the image.

File identi�cation is based on a double scale constructive
approach, applied to the adjacency graph. The �rst step builds
cell alignments, i.e. candidate cell �les under spatial and geomet-
ric constraints. The second step manages the case of alignment
recoveries. Finally, the resulting isolated alignments are linked
to build cell �le fusions.

(1) Building alignments by applying spatial and geometric con-
straints. This task extracts the longer rectilinear straight paths
of �geometrically similar� vertices from the adjacency graph.
In other words, it detects a vertex sequence along which the
surface of the underlying basin varies gradually. These alignments
are constructed step bystep, bysuccessive aggregations of vertices.
More speci�cally, it means �nding which vertex w of the graph
must be added at the end of the v line under construction to
complete it.

The angulation (direction) constraint. Let us de�ne the vertex
neighborhood Nk(vi) of rank k as the set of vertices located at a
geodesic distance k from vertex vi. Let us then de�ne the angula-
tion A(vi, w) as the angle de�ned from the complement to 1808 of
(vi21, vi, w) where vi and vi21 are the last two vertices of the built
alignment and w is the candidate vertex. The angulation can be
used to choose the best candidate w that minimizes the angular
offset from the reference direction, i.e. the current cell alignment.
In no cases may this angle be greater than a threshold which is
given by a decreasing linear function (to 358 at 108) that itself
is dependent upon the geodesic distance. For the �rst two �le
cells the angulation value is de�ning according to the main orien-
tation. The vertex solution w is selected from among the wk
vertices of the Nk(vi) set and is the vertex most geometrically
similar and nearest to the �le axis. In fact, for a given geodesic
distance k, at most two vertex candidates are considered, i.e.
the two closest vertices (wa and wb) lying on either side of the
axis formed by the last two geometric centres of the cells of
the �le under construction (Fig. 3).

The geometrical similarity constraint. The candidate most geo-
metrically similar to vertex vi is retained. The geometrical com-
parison is performed based on their mutual underlying basins.
Let GSpq be the geometric similarity index between two vertices
p and q that is given by the normalized difference between the
surface areas Sp and Sq

GSpq =
|Sp � Sq|
(Sp+Sq)

(1)

The more the index tends toward 0, the more similar the cell
surface areas. This index is particularly well suited to softwoods
in which the shape and surface area of the tracheid varies very
little. For angiosperms, the index is a good indicator of rough
size ruptures while permitting continuous and progressive
surface area variations.

In practice, if the smallest GSpq value is lower than 0.5, the can-
didate is assigned to the current alignment. If the geometric simi-
larity index of the vertices is greater than 0.5, the candidate is
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wa and wb are the candidates located at a geodesic distance of 1. Vertex wd is
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wc is not considered because vertex wb is closer to the �le axis.
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rejected, the geodesic distance k is incremented and the process is
repeated. The neighbourhood explored is progressively enlarged
to a geodesic width of 5, at which point the construction of the
alignment stops. This neighbourhood width was an experimental
limit set arbitrarily by the wood anatomists involved in the project.

Before validating the alignment as a cell �le section, a feed-
back control test is applied as the construction process should
be reversible.

This feedback uses the main orientation of the �le as a refer-
ence to reduce �le drift. When a vertex w is chosen, a check is
performed that the reciprocal is true, i.e. that we obtain current
vertex v when falling back from vertex w using the main orienta-
tion of the �les as a directional reference. If reciprocity is not
con�rmed, the construction of the �le stops. If it is con�rmed,
the vertices located on the shortest path linking v to w are
added to the cell alignment by the Dijsktra algorithm (Cormen
et al., 2001). The criteria employed are described in the next
section. Finally, vertex w becomes the new extremity of the
alignment and the search process is repeated until the alignment
construction stops.

Once stopped, the detected alignment builds a candidate
cell �le. The two next steps (recovery management and fusion)
then concern the cell �le level.

(2) Managing recoveries. During construction, some vertices may
be assigned to multiple �les due to the presence of biological
organizations (vessels and channels) that disrupt the staggered
arrangement. The assignation of these vertices to the most
optimal �le is solved by the shortest path search algorithm in
the adjacency graph. The Euclidean distance between the geo-
metrical centres of the watershed basin is used as a criterion.
This distance sums the angle and shape considered in �le build-
ing. The greater the angular deviation, the greater the Euclidean
distance. The greater the size difference between successive
cells, the greater the Euclidean distance. The shortest path in
terms of Euclidean distance corresponds to the best alignment.
As above, we use the Dijsktra algorithm here, and the

corresponding vertices are then removed from the other �les,
which will be fractionated.

(3) Linking isolated cell �le sections. Due to the presence of
intrusions, cell tears or limitations of the watershed algorithm,
the �le identi�cation process may cause isolated �le sections to
appear (Fig. 4). Here, merging can be used to concentrate
several parts of the �les using simple topological rules to estab-
lish whole �les, based on �le adjacency (Brunel et al., 2012).
Let us assume that two �les are adjacent when two of their
cells are adjacent.

The merging process is then based on two furtherassumptions:
(1) each �le crosses the image from one side to the other and (2)
the �les do not intersect. A �le section does not ful�l the �rst
assumption, i.e. one or both tip(s) do(es) not match with the
underlying image border.

From those assumptions, we deduce a property resulting from
�le adjacency.

Given two �le sections T2 and T2� adjacent to �les F1 and F3,
it is highly likely that T2 and T2� are two parts of a single F2 �le.
In other words, T2 and T2� are located between F1 and F2.

Note that, under the exposed assumptions, restricted cases of
�le merging concern only sections between two lines crossing
the image from side to side. In other cases, it was decided to
leave the situation at the expert�s discretion and evaluation.

This method creates �les or sections of �les with high con-
�dence (Fig. 5, right). Note that isolated cells or artefacts (due
to segmentation errors or to poor image resolution preventing
an acceptable segmentation) cannot be part of any �le and no
attempt is made to connect them to a �le. Complex cases are
left to the discretion of the user.

Typing

Cell typing is the ultimate step as used to classify the different
cells present (�brous, tracheids, vessels, rays, etc.). It is based on
the geometric and densitometric characterization of the catch-
ment basins associated with the cells� adjacency graph vertices.
Unlike Kennel et al. (2010), we decided to discard supervised
classi�cation due to the dif�culties encountered in providing
reinforcement training that is both suf�ciently complete and
representative of biological variability.

A decision tree (Fig. 6) was established with wood anatomists
and is based on the following observations that are sequentially
tested:

(1) The perimeter of the cells, denoted P, can be used to differen-
tiate �large� structures from generally �small� cells.

(2) The circularity coef�cient (Zunic and Hirota, 2008) is given
by a weighted ratio between the surface area and the squared
perimeter �4p (area/perimeter2). Circularity ranges between
0.0 and 1.0: the circularity of a circle is 1, and is far less than
for a star�sh footprint. Values may not be valid for very small
particles due to the de�nition of perimeter and area in a square
grid.

The thresholds used in the decision tree are re-evaluated for
each image by automated classi�cation of their numerical
values. The classi�er used is an implementation of two-means
clustering. This conventional data mining method consists of

A

B

FI G. 4. Linking isolated sections. (A) Result of linkage processing without con-
nection. (B) Result with connection. One colour is used per �le.
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FI G. 5. Left. The native image; the images show different the preparations (sanded wood and stained histology sections), species (Pinus, �r, Pinus, mahogany) and
clades (gymnosperm and angiosperm) that were processed. Right. Automatic identi�cation of cell �les; random colouring is used to enhance the visibility of the iden-

ti�ed �les (these colours should not to be confused with the reliability index colour).
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allocating n observations in two clusters to minimize the intra-
and maximize inter-class standard deviation. The threshold is
therefore assigned by the median value between the upper
bound of the weakest group and the lower bound of the strongest
group.

Beyond the identi�cation of alignments and biological typing,
the anatomist requires a set of numerical results characterizing
the shape, size and nature of more or less complex biological
structures (walls, lumen, cells, �les, etc.). These characteristics
are de�ned by parameters that are automatically evaluated. In
the context of mass processing, it is advantageous to be able to
qualify the accuracy of these evaluations. A certainty index is
thus assigned to each one calculated, whether it focuses on the
cells, their components or their alignments.

Reliability

Intuitively, the computed measures will be more or less close
to the true value depending on the cumulative errors stemming
from image quality, biological con�guration and algorithmic
approximations. It is therefore important to assign each result a
reliability estimation.

A �le f must be suf�ciently long to be signi�cant; its length
Lf must be greater than threshold L. L is de�ned from the
length Lf distribution analysis. For each image the threshold is
re-evaluated to re�ect the biological characteristics inherent to
each of them as a �le must be composed of similar cells in
terms of shape, size and appearance. For the sake of simplicity,
these three criteria are reduced to the single height of cells
de�ned from all points in the normal direction of the �le. This
simpli�cation stems from the maturation mechanism of trac-
heids, for which cell variations only concern cell extension,
not thickening. Clearly, this mechanism cannot be applied to
broadleaved trees, but in practice this single criterion appears
to be suf�cient to characterize the continuous variation observed
in the cell �les of broadleaved trees. As a result, the heights H and
Hj+1 of consecutive cells in �le f are compared. The reliability
coef�cient Rf of �le f is described by a product of standardized
terms ranging from 0 to 1.

Rf = 1 � max
L � Lf

L
, 0

� �� � �n�1

j=0
1 �

|Hj � H j+1|
Hj + H j+1

� �
(2)

The closer the coef�cient to 1, the more reliable �le f.

By analogy, we can determine reliability coef�cients for
the geometrical parameters that characterize �le cells. The ex-
pression for this coef�cient will depend on the nature of each
parameter and more speci�cally on the factors in�uencing that
parameter. The surface area of the basin is independent of
local image blur because it is obtained by watershed segmenta-
tion, while the surface area of the lumen is highly sensitive to
local image blur because it is obtained by an intensity classi�ca-
tion. The reliability coef�cient for the lumen is therefore directly
related to blur level. Ladjal (2006) de�ned a blur indicator that
characterizes the spread of maximum intensity amplitudes, i.e.
the speed at which the signal passes from the lowest to the
highest intensity. This is de�ned by the following expression
where p(x) shows the pixel intensity of a basin and p�(x) the
variance.

�( p) =
maxx[ Rp(x) � minx[ Rp(x)

maxx[ R| p�(x)|
=

amplitude(I)
max(|�I|)

(3)

When the coef�cient is high, blur is strong. The reliability coef-
�cient for lumen surface area (Ils) is de�ned below where thresh-
old Ts is de�ned by studying lumen variation using a Gaussian
blur. Surface areas above the threshold are not signi�cant.

Ils =
0 if �( p) . Ts

1 �
�( p)

Ts
else

�
�

�
(4)

Note that the accuracy of the surface areas and circularities are
sensitive to the size of the objects measured; for example, the cir-
cularity of a discrete circle (Andre‘s, 1994) is meaningful only
above 10 pixel rays.

Parameter computation

Our method produces several layers of results corresponding
to different observation levels: (1) radial �les are classi�ed
according to their length and their cellular self-similarity, (2)
cells are characterized by geometric size, diameter, shape, etc.,
and (3) cell components (wall, lumen) are characterized by geo-
metric parameters (size, thickness, diameter, etc.).

The method has been implemented in Java and integrated as a
plug-in for ImageJ freeware. As an indication, the plug-in allows
images consisting of 1600 × 1200 pixels to be processed in less
than 20 s on a computer with an Intel Q720 processor clocked at
1.6 GHz.

RESULTS AND DISCUSSION

The study described herein aimed to compare the results pro-
duced by our method with those in an expert database containing
12 images whose cells had been manually cropped by wood
anatomists. Our results were obtained without any speci�c user
settings (Fig. 5): all parameters were automatically re-evaluated
by the application based on the intensity histogram generated
foreach image. The different tests conducted allowed usto evalu-
ate the limitations of our method, namely with regard to different
biological contexts, different preparation protocols, and diverse
and varied acquisition conditions. The tests were essentially

Fibre
Yes

No
Ray

Vessel

TC> Ccell

TP> Pcell
Yes

No

FI G. 6. Decision Tree. Tp correspondsto the threshold of the perimeterand Tc the
threshold of circularity. The thresholds are automatically rated by a two-means
clustering applied to all values from the image. Only cells with a lumen are pro-

cessed by the decision tree.
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motivated by simple questions: (1) is our method suitable for
both angiosperms and gymnosperms? and (2) is our method sen-
sitive to preparation protocols, to optical blur, to luminosity
levels, etc.?

Qualitative performance

At this stage in our studies, the performance of our method was
subject to a qualitative assessment by comparing � in a fairly
global manner � the results produced with those of an expert
appraisal. Of course, it is always possible to compare �process-
ing� time, number of cells detected or �les identi�ed (Table 2).
For example, Table 2 shows that the automatic method detects
a consistent number of cells about 80�100-fold more rapidly
than the expert, and this regardless of preparation protocol, ana-
tomical con�guration or magni�cation used, and that, overall,
our method works well (88 % of �les detected on average)
on images presenting a structured organization with a marked
wall/lumen contrast.

Geometric precision

We have seen that �les are created only from geometric and
topological rules applied to the basin adjacency graph. It is there-
fore important to ensure the robustness of the basin detection, i.e.
the method used must be precise in cell cropping and insensitive
to image blurring.

Figure 7 compares about 60 normalized areas obtained by
the manual and automated methods. The areas were divided
by the median area to re�ne the regression. The coef�cient of de-
termination tends toward 1, showing that the areas are closely
correlated. The slope of the regression is weakly greater than 1,
indicating slight over-estimation by the automated method.

The low shift of 0.0127 con�rms the middle error of 5 % on
right areas. The automated method appeared to over-estimate
the values (or the expert appraisal under-estimated the values).
The only certainty is that the automated method is repeatable.

The major limitation to the automatic �le identi�cation
method stems from image content, namely the photometric char-
acteristics of the image and the structural biological layouts.

On �le identi�cation, only geometric accuracy is studied. The
geometric shift is deliberately not taken into account as it is consid-
ered to be negligiblewith respect to cell surface area. However, the
study could feasibly be extended to geometric shift, namely to
assess the geometric overlap between expert annotations and
segmentation algorithms.

A study was conducted on the effect of optical blur, which is
often present in images and is caused by peripheral deformations
due to the microscope lens or sample �atness. The algorithmic
stability of our method was evaluated by acquisitions of the
same image area with different adjustments. A statistical evalu-
ationofcell croppingvariabilitywasthen performed. We didhigh-
light the fact that the intercellular lines obtained by the watershed
algorithm are generally unchanged by image blurring. They cor-
respond, in fact, to gradient slope inversions: the image smoothing
produced by the optical blur reduces the intensity dynamic of
the image without removing the changes in intensity variations.
Overall, the crest lines remain unchanged (Fig. 8).

Figure 9 compares 60 areas obtained from a sharp and a blurred
image. The coef�cient of determination tends toward 1 showing
that the areas are closely correlated. The slope of the regression is
slightly less than 1, indicating slight under-estimation for blurred

TABLE 2. Outline of some signi�cant results: size of processed images, number of extracted cells, CPU time on a PC with an Intel Xeon
at 2.3 GHz, and total Quality Index de�ned as the ratio of number of �les automatically identi�ed and reconstructed over total number

of lines; for the purposes of the expert analysis, the cells were manually cropped using ImageJ software

Species Size (pixels)

Expert Plugin

% of �les detectedCell numbers Times (s) Cells numbers Times (s)

Mahogany 1024 × 768 1302 2520 1359 14.3 86
Fir 1360 × 1024 787 1300 800 12.4 88
Black Pine 1 1600 × 1200 1794 2750 1873 23.2 92
Caribbean Pine 1360 × 1024 819 1500 828 11.5 91
Black Pine 2 1600 × 1200 1411 2450 1458 16.1 83
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9 y = 1.0477x + 0.0127
R2= 0.9991

FI G. 7. Study of basin surfaces on mahogany. The x-axis shows the normalized
areas obtained by the fully manual method. The y-axis shows those obtained by
the automated method. The coef�cient of determination is close to 1, showing

a good �t.

A B

FI G. 8. Comparison of watershed results on a Pinus cross-section. (A) Crest
lines from a sharp image. (B) Crest lines from a blurred image. Basin outlines
are virtually identical between the sharp and blurred images. The sharp image
has a small additional basin corresponding to wall detachment caused by

cutting. This basin was deleted in the supernumerary removal phase.
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images. The method thereforeyielded almost identical results for
both sharp and blurred images.

Reliability and blur

Image blurring is a source of potentially major bias when
evaluating lumen areas and wall widths. As indicated before,
the cell segmentation is based on a two-means clustering. This
classi�cation is sensitive to the intensity dynamics of the cellular
points and is therefore modi�ed if intensity dynamics are reduced
by optical blur (Fig. 10). We observed that the surface area of the
lumen fora given cell was reduced when blur increased, i.e. when
intensity dynamics decreased.

The localblur indicator introduced earlier isused toestimate the
error on the surface area measurements of cell constituents. The
�gure on the left shows the consistent behaviour of the blur

estimator that was calculated from cells considered in images
that were digitally disrupted by an incremental Gaussian blur.

Therefore, the local blur indicator can be used to �lter the
results and retain only the sharpest cells. It is used, in particular,
to create mosaic images (Brunel et al., 2013), for retention of the
most reliable basins. It could also possibly provide a correction
factor for measures made on areas that are more or less subjected
to optical blur.

Reliability of �les

The overall reliability coef�cient can be used for �le character-
ization of �les, in terms of both signi�cant expression and geomet-
ric behaviour, i.e. a �good� �le is a suf�ciently long line in which
cell size varies gradually. This coef�cient acts directly to �lter the
�les (Fig. 11). Files with a good coef�cient are shown in green
while those with a poor coef�cient are in red. The red�orange
hues indicate con�gurations with cuts or sharp discontinuities.
This estimator is well suited to softwoods with very organized
and continuous cell arrangements. In angiosperms, it may be
used for a rapid visualization of vessels and adjacent �les. These
�les are useful foranalysing theendogenous geometricconstraints
caused by vessels on �les.

This indicator is ultimately a very integrated aspect of the �les
identi�ed. It is more comprehensive than the performance indices
mentioned in the �rst part of the results, and is also more complex
to explain as it goes beyond �le identi�cation reliability to actually
re�ect �le quality. For example, some alignments, shown in
yellow in the image below, appear to be �visually correct� while
their coef�cient is rather low. They are penalized by excessively
elevated surface area variations. For example, the third orange
�le from the left looks to be good, but small basins can be seen
within the �le arising from over-segmentation caused by wall
detachment. Files can be �ltered for statistical analysis thanks to
their cell coef�cients.
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FI G. 9. Basin surface areas study on Pinus, with cell areas expressed as pixels.
The x-axis shows the areas estimated from sharp images. The y-axis shows those
estimated from simulated blurred images. The slope of the regression is slightly
less than 1, indicating minor under-estimation of basin areas in the blurred

images.
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FI G. 10. The behaviour estimator shows the blur tendency and the red crosses
correspond to the �ve optical microscopy blurs. The �ve lumen areas are
shown with their corresponding optical blurred snapshots. The colour indicates
the reliability coef�cient, from green for true lumen area to orange for reduced

lumen area.
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FI G. 11. (A) Cross-section of native Abies. (B) The automated identi�cation of
radial �les. The colour value indicates the reliability coef�cient: poorly reliable

�les appear in pale red while very reliable �les appear in pale green.
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General conclusions

The method described herein works correctly for images that
show both high contrast between walls and lumens (without local
color inversion) and a visible cellular organization. Under these
conditions, all the obvious lines determined by quali�ed experts
are correctly identi�ed with signi�cant time savings (a typical
manually expert identi�cation required 10 h on our samples).
Moreover, the certainty index allows for selective exploitation
of the results for statistical studies.

CONCLUSIONS

The automated analysis of anatomical wood sections will con-
tribute greatly to understanding secondary plant growth and de-
velopment. Herein, we propose a fully automatic method for the
recognition of operational cell �les in mass processing.

We have also established reliability coef�cients to character-
ize the �les, their components and their measurement. These re-
liability coef�cients are mainly used to �lter results for statistical
studies conducted by botanists and aim to draw their attention to
speci�c biological con�gurations.

We have shown that the method is equally applicable to digital
images of stained histological wood sections and images of
sanded ligneous planes.

File identi�cation is based on detection of cell alignments
showing gradual geometric variations. The cells in the image
are automatically cropped by watershed lines calculated from a
set of judiciously �ltered local minima, thus reducing the risk
of exaggerated segmentation. Cell �les are de�ned by the
longest straight vertices that are �geometrically similar� to the ad-
jacency graph created from the watershed catchment basins.
These alignments are constructed one after the other by succes-
sive aggregations of vertices in progressively enlarged neigh-
bourhoods. Unlike traditional approaches, cell typing here is
not based on the creation of reinforcement training, but on a de-
cision tree established with wood anatomists.

In addition to �le detection, the cells are characterized by a set
of values (wall thickness, lumen surface, cell circularity, etc.)
that are necessary for the statistical analysis of �les and their vari-
ability. To ensure that the measures are relevant, reliability
indices have been created, based on existing methods and bio-
logical reality (�le length and continuity). These indices are
used to select the most important �les or highlight particular bio-
logical disturbances or con�gurations.

The percentage of unusable �les is offset by the quantity of
images that can be processed. Mass processing allows us to
study spinal �les up to the cambium over several wood growth
units.

These initial results are already very interesting and con�rm
that the method has great potential and could be suitable for stat-
istical studies and the detection of invariants or trends in large ob-
servation samples. Comparative studies undertaken with images
annotated by experts have shown that the proposed method is
time-ef�cient and generally insensitive to the optical blur poten-
tially present in micrographs. A blur indicator has been intro-
duced to study the stability of the method and in the short term
could be used to correct the measurements obtained. Finally, a
reliability indicator to characterize �les, in terms of both signi�-
cant expression and geometric behaviour, is given either to draw

the attention of experts to speci�c biological con�gurations or to
remove potentially erroneous data from statistical studies.
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Hitz OM, Gärtner H, Heinrich I, Monbaron M. 2008. Wood anatomical
changes in roots of European ash (Fraxinus excelsior L.) after exposure.
Dendrochronologia 25: 145�152.

JeacockeMB,LovellBC.1994.Amulti-resolutionalgorithmforcytological image
segmentation. Proceedings of the 1994 Second Australian and New Zealand
Conference on Intelligent Information Systems, 1994. IEEE, 322�326.

Jones R, Bischof L. 1996. A graph�based segmentation of wood micrographs.
Computing science and statistics 28. Proceedings in Computing Science
and Statistics 28: 12�20.

Kennel P, Subsol G, Guéroult M, Borianne P. 2010. Automatic identi�cation
of cell �les in light microscopic images of conifer wood. In: Djemal K,
Deriche M, eds. 2nd International Conference on Image Processing
Theory, Tools and Applications. IEEE, 98�103.

Krause C, Rossi S, Thibeault-Martel M, Plourde P-Y. 2010. Relationships of
climate and cell features in stems and roots of black spruce and balsam �r.
Annals of Forest Science 67: 402�402.

Lachaud S, Catesson A-M, Bonnemain J-L. 1999. Structure and functions of
the vascular cambium. Comptes Rendus de l�Acade·mie des Sciences �
Series III. Sciences de la Vie 322: 633�650.

Ladjal S. 2006. Estimation du �ou dans les images naturelles. In: Quinzie·me
congre·s francophone Reconnaissance des formes et intelligence arti�cielle
(RFIA). Franc‚ois-Rabelais University Press (in French).

Marcuzzo M, Quelhas P, Campilho A, Mendonça AM, Campilho A. 2009.
Automated Arabidopsis plant root cell segmentation based on SVM classi�ca-
tion and region merging. Computers in Biology and Medicine 39: 785�793.

McInerney T, Terzopoulos D. 1999. T-Snakes: topology adaptive snakes.
Medical Image Analysis 4: 840�845.
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