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1. Introduction

Traditional forest inventory practices mainly rely on statistical descriptions obtained from field 

sample plots (Duplat and Perrotte 1981). This method provides reliable estimates at the forest 

level  while  limiting  fieldwork  cost.  However  information  at  the  management  unit  level 

(compartment) is often not usable due to the low number of observations. In the past decade, 

airborne  laser  scanning  (ALS)  has  demonstrated  its  ability  to  model  the  3D  geometrical 

structure of the canopy even at the single tree level. The area-based approach aims at combining 

the high resolution of LiDAR data with the sample field plots in order to provide statistically 

calibrated, continuous maps of forest parameters  (Næsset 2004). Relationships between local 

descriptors of the ALS point  cloud and forest  parameters  such as  basal  area,  stem volume,  

dominant height are investigated based on the available field data. Once a prediction model is  

validated, it is applied to the whole ALS dataset in order to produce the map of the desired 

forest parameters.

Whereas the planimetric accuracy of an ALS point cloud is around 25 cm  (Baltsavias 1999), 

position accuracy of field plots is far lower. Indeed, plots are generally positioned relatively to  

elements that are visible on aerial pictures, or with Global Positioning System (GPS) receivers.  

Because of the canopy that reflects and attenuates the GPS signal, GPS measurements accuracy 

inside forest stands is lower than in open areas and of the order of a few meters (Naesset and 

Jonmeister 2002). However, position accuracy is difficult to estimate as it depends on acquistion 

parameters,  satellite  availability  and  canopy  density. The  error  in  field  plot  position  is 

problematic as the predictive relationships are investigated between ALS point clouds that do 

not  exactly  correspond to the inventoried sample plots.  This  error  is  likely to  decrease the 

degree  of  fit  of  the  final  prediction  models  (Gobakken and Næsset  2009).  Meanwhile,  the 

prediction error which is often obtained with cross-validation is likely to be over-estimated as 

the validation data is also affected by the position error.

In order to both calibrate better prediction models and evaluate their accuracy, it is important to 

improve co-registration. The ALS data itself can be used to correct the field data position when 

trees positions are recorded for the sample plots, e.g. by visually comparing the Canopy Height 

Model (CHM) derived from the ALS data with the trees position and size. However this task is 

very time-consuming, in particular when the position error is large or when the forest canopy is 

closed and homogeneous. A few methods have been proposed to automatically adjust the plot 

position to ALS data.  Olofsson  et  al. (2008)  first  detect  single trees in  the  CHM and  then 

computed single trees position images with trees modelled as Gaussian surfaces. The image of 

the field trees are cross-correlated with the image of the detected trees in order to estimate the  

offset to be applied to the field data. High co-registration accuracies are obtained provided that 

the position errors of single trees  are small. Dorigo  et al. (2010) define a cost function wich 

takes into account the difference in field and CHM heights, as well as the social status of a tree.  

Pascual et al. (2013) also take into account the match between the ALS digital terrain model and 

topographic measurements.
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The objective of this article is to test a co-registration approach based on the direct correlation 

between an image of the field trees diameters and the CHM, and to evaluate its robustness to the 

number  of  georeferenced  trees.  Indeed,  measures  of  tree  heights  and  positions  are  time-

consuming and the issue of minimizing inventory cost while maintaining the possibility of a 

posteriori position correction is of high interest when designing ALS-assisted forest inventory 

protocols.

2. Material

2.1 Study area

The  study  area  is  the  public  forests  of  Prénovel  and  Les  Piards  (Jura,  France,  figure  1). 

Elevation range is  quite narrow (900 to 1060 m) but  the topography is rough.  The forest is 

mainly  constituted of  uneven-aged,  mixed stands of  silver  fir  (Abies  alba),  Norway spruce 

(Picea abies) and beech (Fagus sylvatica). In the framework of a national research program 

about the impact of roe deer, permanent sample plots were installed in 2005. The inventory was 

updated between Sept. 9th, and Oct. 6th, 2011 in the framework of the project BGF (Biodiversity 

and Forest Management).

Figure 1: Study area location (left), plot positions over the ALS canopy height model (center), shaded 

ALS digital terrain model (right).

The sampling design is a grid pattern of size 200 m x 200 m, which results in 139 plots inside 

the forest (583 ha). Plot centers were positioned with a GARMIN commercial receiver. On each 

plot, all trees with diameter at breast height (DBH) above 7.5 cm were inventoried up to a radius 

of 10 m, and all trees with DBH above 27.5 cm up to 17 m. For each tree, the azimuth and soil 

distance from the plot center, the DBH and species were recorded. Tree heights were measured 

on sample trees. Among the 139 plots, basal area ranges from 13.3 to 60.5 m2.ha-1, with a mean 

of 31.9. Stem density ranges from 110 to 1520 stems per hectare, with a mean of 510.
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2.2 ALS data

Airborne laser scanning data were acquired in the framework of the NEWFOR research project.  

The flight took place on Sept. 16-17th, with a full waveform RIEGL LMS-Q560 scanner on a 

fixed-wing aircraft. Flight speed was 180 km.h-1 at 500 m above ground, with a strip overlap of 

60%. Pulse frequency was 180 kHz with a scan angle of ± 30 degrees. The obtained mean pulse 

density on the 9.2 km2 is 9.3 m-2.

Pre-processing  of  the  raw  files  was  done  by  the  contractor.  Echoes  were  extracted  and 

georeferenced with the RIEGL software suite. The resulting point cloud was classified in two 

classes (ground and vegetation) with TerraScan.

3. Methods

3.1 Co-registration algorithm

The workflow for the co-registration of a plot is presented in figure 2. The required inputs are:

• tree positions and value (diameter or height);

• plot center position and radius;

• canopy height model.

Figure 2: Workflow of the co-registration algorithm.

The canopy height model  c is the difference between the digital surface model, calculated by 

retaining the altitude of the highest  ALS point  in each pixel,  and the digital  terrain model,  

calculated  by  bilinear  interpolation  of  ALS  ground  points  at  the  center  of  pixels.  Spatial 

resolution is 0.5 m. A 3x3 median filter is applied to the canopy height model in order to fill the 

blank pixels with no ALS points. The trees map is rasterized into an image p by retaining for 

each pixel the largest value of the trees contained in this pixel. A plot mask m is computed by 

retaining only pixels  whose centers  are  located inside  the  plot  circle.  An offset  (dx,  dy) is 

applied to the position of the mask and trees image. The correlation between the canopy height 

model and the offset trees image is then calculated over the mask according to equation (1):
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The correlation is computed for  dx and  dy between -20 and +20 with 0.5 m increment. The 

values are rasterized and a Gaussian filter with sigma=0.5 pixel is applied. The hypothesis is 

that when the co-registration is correct the correlation between the trees image and the canopy  

height model is maximal. Therefore the coordinates of the maximum value in the smoothed 

image rg are retained as the offset to be applied to trees positions.

The workflow is applied for each of the 139 plots of the study area, with the GPS measurement 

as the reference plot center position. Corrected positions obtained after applying the offset are 

manually checked.

a) b)

Figure 3: Plot 8 a) Uncorrected tree positions over the canopy height model b) Image of the correlation 

between the trees image and canopy height model, red arrow is the offset to be applied to the plot center.

3.2 Prediction models

In order to evaluate the effect of co-registration on the accuracy of ALS prediction models, the 

area-based method is applied to calibrate a prediction model for basal area.

A Box-Cox transformation is first  applied to the dependant variable (basal area) in order to  

normalize its distribution. Independent variables are selected among a list of ALS metrics by 

retaining the group which yields the highest  adjusted-R2 in ordinary least  square regression 

when testing all possible combinations with at most three variables. 

Validation is based on the repetition of 1000 ten-fold cross-validations. For each repetition, ten 

groups of equal size are randomly constituted among the dataset. On group is discarded at a 

time when computing the coefficients of the regression for the selected dependant variables, and 

then the prediction error is calculated for each plot of the discarded group. The global root mean 

square error for the repetition is recorded. This procedure is applied to the four cases where the 

GPS / corrected positions are used for the calibration / prediction steps. 

3.3 Robustness assessment

To assess the influence of the number of georeferenced trees on the possibility of automated co-

registration, the workflow described in paragraph 3.1 is applied to the plots with the corrected 

positions, but by using only the n nearest trees from the plot center or n largest trees on the plot. 

In the case of the nearest trees, the distance between the plot center and the farthest considered 

tree is used as the plot radius to compute the plot mask.

When the proposed offset for the co-registration based on this restricted trees list is within two 

meters from the starting position, the algorithm proposition is considered as acceptable. The  

number of reference trees n is tested for values between 3 and 25. In case the number of trees in  

the plot is smaller than n, all trees are used to compute the trees image.
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4. Results

4.1 Co-registration

For  127  plots  (91.4%)  the  correction  proposed  by  the  algorithm  could  be  unambiguously 

validated by the operator.  Among the twelve other plots,  six (resp.  two) were correctly co-

registered when the searched window was increased to ± 40 (resp. 100) meters. Three of the  

four remaining plots could be manually co-registered. For two of them a few trees appeared to  

have been felled between the inventory and the ALS flight.  Those trees were subsequently 

removed from the inventory and the algorithm was then able to correctly co-register the plots.  

On one plot  the algorithm failed to identify the correct  position, and one plot  could not  be 

identified.  For  the  138  identified  plots,  mean distance  between the  GPS and the  validated 

position is 9.0 ± 8.7 m. Figure 4 shows the distribution of the difference between GPS and 

validated positions for the 138 identified plots.

Ab

Absolute position error

a)

dx

b)

Figure 4: Co-registration error for the 138 identified plots. a) Distribution of the absolute error. b) Plot of 

correction offsets.

4.2 Prediction models

When the plots are georeferenced with the GPS positions, the selected variables are the sixth  

decile of first  echoes height,  the sixth decile of the last echoes height,  and the mean of the  

canopy height model. With the corrected positions, the selected variables are the 99 th percentile 

of the single echoes and the mean of the canopy height model. Statistics for the RMSE obtained 

in 1000 ten-fold cross-validations are presented in table 1.

Table 1: RMSE mean and standard deviation (m2.ha-1) obtained in 1000 repetitions of ten-fold cross-

validations for the basal area prediction model, depending on the plot positions used for calibration (row) 

and validation (column).

Validation

GPS positions Corrected positions

Calibration
GPS positions 6.94 ± 0.056 5.83 ± 0.052

Corrected positions 7.13 ± 0.035 5.83 ± 0.038
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4.3 Robustness assessment

Figure 6 presents the proportion of correct offset propositions by the co-registration algorithm 

when only the  n nearest or largest trees are used as references. With the three largests trees, 

88.4% of plots are correctly georeferenced, but only 60% with the three nearests. All plots are 

correctly positioned with the six largest trees, whereas the highest percentage attained with the 

nearest is 99.3% with 29 trees. It  is noteworthy that the percentage slightly decreases when  

more than the sixteen largest trees are used.

Figure 5: Percentage of correct positions depending on the number of references trees: n nearest (blue 

solid line) or n largest (red dotted line).

5. Discussion

Dorigo  et  al. (2010) could automatically co-register  68% of  the 98 samples  plots  from the 

Austrian  National  Forest  Inventory  in  Vorarlberg  within  5 m  of  the  position  previously 

determined by an operator. Those plots consisted in a combination of fixed-area (radius=2.6 m) 

and angle count sampling. The proportion of correctly co-registered plots in the present study is 

higher (91.4%), which could be linked to several factors. First the plots are of fixed area with  

17 m radius, so that more trees are inventoried inside smaller surfaces, leading to a better local 

correspondance between the stand described by the inventory and the canopy height model. 

Moreover, the plots are concentrated in a small  area where the stands are  uneven-aged and 

dominated by coniferous species. The canopy is made of a few dominant trees and several small 

gaps, so that when the correlation is computed, the correct position results in a clear global  

maximum. Besides, the time gap between the ALS flight and the field inventory was only one 

year, so that stand changes lead to errors in only two plots. In Vorarlberg the time gap might be  

larger, with an ALS data from 2002-2004 and field surveys from 2000-2002.

With a posteriori validation of the co-registration, a bias might exists as the operator would be 

tempted to consider a proposition as correct even tough he would a priori  have preferred a  

slighlty different position. However, it turned out that the propositions of the algorithm were 

mostly within one or two pixels from the visually determined solutions. The absolute precision 

of the co-registration is expected to be around one meter, while the relative position precision of 

a tree within a plot is around 0.5 m. However, this value is based on the hypothesis that the 

position of the maxima of the canopy height model is an unbiaised indicator of the position of 

tree stems. In slope areas, normalizing the digital surface model with the digital terrain model 

leads to a deformation of the canopy shape and a possible virtual shift of the apices of round 
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crowns (figure 6b-c). Moreover, in slope areas trees tend to bend downslope or to develop a  

flag-shaped crown so that the planimetric position of the tree apices are located downslope 

(figure 6a). In such cases, the co-registration is finally biaised because the crowns in the canopy 

height model are really or virtually shifted downslope compared to tree stems. The position  

error will  then depend on the slope, crown shape and tilt of trees. Methods that rely on the 

comparison of the positions of local maxima (Olofsson et al. 2008) will avoid the deformation 

of tree crowns if local maxima are detected in the digital surface model, but will fail to handle  

the case of tilted trees. Anyway, this error relatively to the trees stems leads to a better co-

registration with the tree crowns so that this should actually benefit to the prediction models as 

they are built on relationships with the ALS-described crowns, and not the stems themselves.

a) b) c)

Figure 6: a) Difference between stem position and apex position in tilted trees. (b-c) Shift of the apex 

position of a round crown when correcting slope.

With the corrected positions used in calibration and validation of the prediction models, the 

RMSE of basal area prediction is 5.83 m2.ha-1. With GPS positions the apparent RMSE is higher 

(6.94) but the models are actually better as the RMSE for the GPS-calibrated model is the same 

as the co-registered-calibrated model, when both are validated with the co-registered positions.  

This shows that the calibration step is quite robust to the position error of field plots, but that 

this error leads to a significant under-estimation of the precision of the model in the validation 

step. Using GPS instead of corrected positions only leads to a slightly higher variability of the 

estimations of RMSE (0.052 instead of 0.03 m2.ha-1). Considering that the GPS position error 

was 9.0 ± 8.7 m, these results differ from the findings by Gobakken and Næsset (2009), which 

showed that position errors higher than five meters yielded predictions with lower accuracy. The 

difference might be explained by the difference in the position error distribution, which was 

simulated in their study, or by the homogeneity of the forest stands. Indeed in homogeneous 

forest stands the position error should not result in large differences in the ALS metrics.

A high percentage of co-registration can be achieved with a small number of positioned trees 

when those selected are the largests on the plot. This result shows that with a limited time spent 

on georeferencing a few trees, the possibility of automatic co-registration remains. The decrease 

of successful co-registration when smaller trees are used may be explained by the fact that those 

trees are often overtopped by the crown of larger trees. When added to the tree image, small  

value pixels are created where the canopy is actually high because of adjacent dominant trees. 

To avoid this effect, it is possible to model the crown of each tree and compute the tree image as  

the maximum of all tree crowns (Olofsson et al., 2008), but this requires additional hypotheses 

about tree crown shape.

With our  dataset,  the  automatic  co-registration failed mainly because of  two reasons.  First,  

changes that occurred in the forest and resulted in a CHM that does not reflect the inventoried 

trees. Second, large GPS errors that are outside the window searched by the algorithm. Those 
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plots might be correctly co-registrated by extending the window size but this requires longer 

processing times. Moreover, a trade-off must be found between the number of additional correct 

co-registrations  and the higher probability of false co-registrations on other plots due to the 

wider window. In order to handle those cases, a flagging criterion such as proposed by Dorigo 

et al. (2010) is required to avoid manual checking of all algorithm propositions.

6. Conclusion

The algorithm proposed for  co-registration  of  field  inventory  with  ALS data  proved to  be 

efficient as 91.4% of plots could be automatically corrected with only the position and diameter  

information. Moreover, the automated co-registration also performed successfully when only 

the five largest trees on the plot are used, which demonstrates the possibility of a posteriori  

position correction while limiting inventory time. Besides, better co-registration turns out to 

have only a small effect on ALS prediction models accuracy, but to be necessary to estimate it  

properly. In order to implement this approach in practice for large datasets, a quality criterion 

needs to be added to decrease the need for manual checking.
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