Skip to Main content Skip to Navigation
Journal articles

Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle

Abstract : Molybdenum (Mo) is a key cofactor in enzymes used for nitrogen (N) fixation and nitrate reduction, and the low availability of Mo can constrain N inputs, affecting ecosystem productivity. Natural atmospheric Mo aerosolization and deposition from sources such as desert dust, sea salt spray, and volcanoes can affect ecosystem function across long timescales, but anthropogenic activities such as combustion, motor vehicles, and agricultural dust have accelerated the natural Mo cycle. Here we combined a synthesis of global atmospheric concentration observations and modeling to identify and estimate anthropogenic sources of atmospheric Mo. To project the impact of atmospheric Mo on terrestrial ecosystems, we synthesized soil Mo data and estimated the global distribution of soil Mo using two approaches to calculate turnover times. We estimated global emissions of atmospheric Mo in aerosols (<10 μm in diameter) to be 23 Gg Mo yr-1, with 40%-75% from anthropogenic sources. We approximated that for the top meter of soil, Mo turnover times range between 1,000 and 1,000,000 years. In some industrialized regions, anthropogenic inputs have enhanced Mo deposition 100 fold, lowering the soil Mo turnover time considerably. Our synthesis of global observational data, modeling, and a mass balance comparison with riverine Mo exports suggest that anthropogenic activity has greatly accelerated the Mo cycle, with potential to influence N limited ecosystems.
Document type :
Journal articles
Complete list of metadata
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Saturday, August 6, 2022 - 4:09:39 PM
Last modification on : Saturday, August 6, 2022 - 4:09:40 PM


Global Biogeochemical Cycles -...
Publisher files allowed on an open archive






Michelle Y. Wong, Sagar D. Rathod, Roxanne Marino, Longlei Li, Robert W. Howarth, et al.. Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle. GLOBAL BIOGEOCHEMICAL CYCLES, 2021, 35, p. 98-111. ⟨10.1029/2020GB006787⟩. ⟨insu-03590099⟩



Record views


Files downloads