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Abstract

We present electrical conductivity measurements (at a fixed frequency of 1kHz) performed on 

three directions  on limestone  samples  from the quarry of Meriel,  during uniaxial  tests  of 

deformation  up  to  failure.  Samples  were  saturated  from 100% to  80% by drainage.  The 

samples showed brittle fracture with Young’s modulus in the range 10-13 MPa. Formation 

factor  (sample  resistivity  divided  by water  resistivity)  values  range  between  2  and 4.  In 

saturated conditions the electrical measurements reflect the initial rock compaction, followed 

by  dilatancy  due  to  new  axial  cracks  formation  and  finally  crack  coalescence,  fracture 

localization and failure. The conductivity increase is related to the crack porosity  Φc which 

starts to increase at relatively low stress (31% of strength). The magnitude of the electrical  

conductivity  variation  is  1  -  4  % of  the  initial  value.  We show that  when  saturation  is 

decreased the conductivity increase occurs earlier during the deformation process, from 68% 

to 17% of strength for 100% to 80% of water saturation respectively, so that the decrease in 
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conductivity at  low stress is less and less present.  The induced relative rock conductivity 

variation in non saturated and undrained conditions is the result of two competing effects : the 

relative  porosity  variation,  and  the  relative  saturation  variation  during  the  deformation 

process. During compaction the electrical conductivity can show either a small decrease or a 

small increase : since the size of the partially saturated pores and cracks is reduced, the water 

occupies a larger percentage of the pore space, and then conductivity can be increased at this 

stage. We show a continuous increase of the conductivity both during the compaction and the 

dilatancy phases when the initial saturation is about 80-85%. Finally a power law is shown 

between conductivity and stress, so that the relative electrical conductivity increase is larger 

as one goes along the compression process.

Just  before  failure,  at  90-95% of  strength,  the  rate  increase  in  horizontal  conductivity 

drops, so that the anisotropy between axial and radial conductivity is about 0.5-2%. At failure 

a drastic increase of this anisotropy can be seen, up to 5-6% (CME21, CME24, and CME13 

samples). 

Introduction

Electrical  resistivity  can  be  used  in  geophysics  to  investigate  the  structure  or  the 

deformation of the crust (Henry  et al. 2003; Le Pennec  et al. 2001; Jouniaux  et al. 1999; 

Pezard 1990). Since the electrical resistivity is related to mechanical properties (Glover et al. 

2000; David et al. 1999; Bernabé, 1986, 1995; Jouniaux et al. 1994), it can be used to detect 

fracture (Nover et al. 2000), or used for in situ stress determination (Cornet et al. 2003). The 

electrical conductivity is a combination of electrolytic conduction for the fluid-filled fractures 

and surface conduction for conductive alteration minerals, and depends on the degree of water 
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saturation  of  the  rock  (Guichet  et  al. 2003).  Therefore  it  is  also  used  to  investigate  the 

migration of fluids through crustal rocks, and to image active fault zones up to 10 km depth 

(Eberhart-Philipps et al. 1995) 

Electrical properties of rocks have been studied in an attempt to find a physical basis for 

earthquake prediction.  Changes in complex resistivity during laboratory creep experiments 

have suggested that it may be possible to identify earthquake nucleation regions through the 

use of standard electrical remote sensing techniques (Lockner & Byerlee, 1986). Changes in 

rock conductivity (DC or low frequency measurements) under deformation up to failure in 

triaxial  experiments  have  been  measured  in  laboratory  and  showed  first  a  decrease  in 

conductivity at low stresses, and then an increase in conductivity when stresses are further 

increased (Brace & Orange 1968; Brace 1975; Jouniaux et al. 1992; Glover et al. 1997). The 

rate of conductivity increase was shown to be larger when water was flowing through the 

sample  (Jouniaux  et  al. 1992).  Some  of  these  experimental  results  were  discussed  in 

conjunction  with  the  dilatancy-diffusion  model  to  interpret  the  field  observations  of 

preseismic changes in crustal resistivity (Scholz et al. 1973; Brace 1975). However, as noted 

some time  ago,  many negative  field  observations  have  challenged  the  dilatancy-diffusion 

model (Takano et al. 1993). 

Most of the previous experimental studies have focused on the resistivity changes under 

saturated conditions, which may not be representative of the shallow crust. Indeed, as a result 

of the magnetotelluric studies, it is well established that the upper crust is often anomalously 

resistive in comparison to the lower crust. This transformation occurs at depth of 13 to 20 km 

and is characterized by a decrease in resistivity of 1 to 3 orders of magnitude. The transition 

from high to low resistivity correlates with crustal temperature of about 400°C (Hyndman & 

Hyndman 1968; Hyndman & Shearer 1989; Marquis & Hyndman 1992; Thouret & Marquis 

1994). An explanation for this anomalously resistive upper crust arises from the behaviour of 
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fluids in the H2O-CO2 system. When a H2O-CO2 solution cools to temperature of 300-400°C, 

a  CO2-rich  phase  will  begin  to  separate  from  the  aqueous  solution  (Nesbitt  1993).  The 

resistivity  of  this  CO2-rich  phase  should  be  several  orders  of  magnitude  larger  than  the 

remaining aqueous solution  (Olhoeft  1981). This may be especially effective in the upper 

brittle crust where permeability is largely a product of a few, relatively large fractures (Brace 

1980). Consequently, even though fractures in the upper crust are probably largely saturated 

with a moderately conductive aqueous solution, the upper crust may be anomalously resistive 

due  to  the  insulating  properties  of  discrete  CO2-rich  bubbles  passing  through the  system 

(Nesbitt  1993).  This  leads  to  the  conlusion  that  we  need  to  know the  behaviour  of  the 

electrical  conductivity  of  rocks  during  deformation  in  non-saturated  and  non-drained 

conditions.

When the rock is not fully saturated the conductivity increases throughout the compaction 

(in uniaxial experiments: Parkhomenko & Bondarenko 1960; Yamazaki 1965, 1966), and the 

amplitude of conductivity increase drops when the saturation is increased (Yamazaki 1966). 

To have  a  better  understanding of  the  rock structure  evolution  during  deformation  up to 

failure,  and  to  track  some  precursory  changes  before  rupture,  we  have  focused  on 

measurements  of  electrical  properties  of  rock  during  deformation,  and  particularly  the 

electrical anisotropy, which has not been measured in previous studies.  Since the electrical 

conductivity  is  related  to  the  water  content  and  to  the  porous  structure,  specially  crack 

connectivity, it can reflect the evolution of the rock structure during deformation.

It is usually accepted that faulting in compressive brittle fracture is induced by coalescence 

of microcracks formed prior to faulting,  these microcracks being randomly distributed and 

subparallel  to  the  maximum compressive  stress  (Brace  et  al. 1966),  and  the  coalescence 

occurring near the peak stress. During the linear part of volumetric strain-stress evolution the 

minerals distort elastically and grains or part of grains shift slightly under the applied stress 
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and slide relative  to  each another  (Brace  et  al. 1966).  New cracks  appear  at  pre-existing 

intergranular boundaries at the onset of dilatancy,  and then at 50-75% of peak stress new 

transgranular cracks appear (Tapponier & Brace 1976; Fonseka et al. 1985). Small  cracks 

grow stabily up to their coalescence leading to a macroscopic instability (Ashby & Sammis 

1990). At later stages of deformation extensive crushing of particles into fine grained gouge 

becomes important (Wong 1982).

Electrical  data  obtained  during  uniaxial  compression  tests  reflect  the  initial  rock 

compaction,  followed  by  dilatancy  due  to  new  axial  crack  formation  and  finally  crack 

coalescence, fracture localization and failure. We present the results of uniaxial compression 

tests run on limestone samples partially and fully saturated with water. This is the first time, 

in  our  knowledge,  that  the  electrical  anisotropy  is  quantified  during  deformation,  since 

electrical measurements have been performed in three directions. Moreover, in non-saturated 

conditions,  unlike  previous  studies  focused  on  very  low  saturations,  we  performed 

measurements  at  relatively  high  water  saturation  such  as  80-100  %,  which  is  more 

representative of the shallow crust.

Experimental procedure

The studied samples come from the quarry of Meriel, France (Jouniaux et al. 1996; Morat 

& Le Mouël 1992; Morat  et al. 1992). Meriel limestone is a bioclastic Lutetian limestone. 

Thin section of this limestone is shown in Figure 1. The sample was impregnated with blue 

epoxy resin to reveal the pore spaces and cracks. The rock is not homogeneous since some 

isolated large pores can be present. The grains and pores are aligned in the bedding plane (the 

X direction). The porosity of studied samples, measured by triple weight, varies from 35.4 to 

37.6 % (Table 1). Measurements carried out on some samples taken beside our samples show 
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that air permeability (measured by the constant flow technique) ranges from 74 to 374 x 10-15 

m2  (Jouniaux et al. 1996), and the access radii distribution shows peaks at 16 and 0.15 µm. 

These  carbonate  rocks  have  been  chosen  for  their  high  porosities,  so  that  the  expected 

electrical conductivity variation induced by the deformation should be a low one compared to 

the amplitude variation expected for low porosity rocks. For this study six parallelepedic (50 x 

50 x 100 mm)  samples were cut in the same block of rock. The rectangular geometry was 

chosen because it is more convenient for electrical anisotropy measurements and for further 

studies using acoustic sensors.

Samples were saturated under vaccum with salted (0.1 M NaCl) water (water conductivity 

was  measured  by  a  WTW  LF330  conductivimeter  and  is  ~1  S/m,  see  Table  1),  at  six 

saturation  levels  ranging  from 100% to  80%.  The  electrical  conductivity  of  the  water  is 

thought to be homogeneous inside the sample once it is saturated. Partial water saturation Sw 

was achieved by drainage of the sample, that is by drying the sample using a vacuum pump 

and placing it in a dessicator during 24 hours. The weight of the sample was measured to 

deduce the water saturation, the weight being measured before and after runs. 

Samples were deformed up to failure under uniaxial compression at strain rate 3.5 to 6 x 

10-7 s-1. Typical experiment lasted 4-5 hours. Loading stress was increased in small steps and 

stress was held at 19 to 23 levels for periods of time 10-20 minutes to collect electrical data.  

The loading force and the axial displacement were measured, leading us to deduce the axial 

stress and the axial  strain.  The horizontal  strains were not  measured,  so that  the volumic 

deformation of the rock was not monitored.

Conductivity of the sample (a scheme of the sample is shown in Fig. 2) was measured in 

three directions  (horizontal  :  x,  y;  axial  or vertical:  z)  by a  two-electrodes  technique at  a 

frequency of 1 kHz, using an HP impedance bridge. Electrodes consisted in silver paint on 

each surface. Impedance response of the sample at frequencies between 100 Hz and 20 kHz 
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showed a quasi-pure resistance with no capacitive effect (angle of the impedance is 0.08° to 

1°) and a fixed frequency of 1kHz was chosen for our measurements  during deformation 

because  it  is  often  the  frequency  at  which  the  out-of-phase  conductivity  is  minimized. 

Measurements at a fixed frequency 1 kHz were therefore performed for each step in axial 

stress. It allows us to compare our measurements to other available data (Jouniaux et al. 1992; 

Glover et al. 1997). The application of an electrical field gives rise to different physical and 

physico-chemical processes both in the bulk and on the interfaces of components (Knight & 

Endres 1990). Since the water used showed a conductivity of about 1 S/m, and since the used 

frequency  is  1  kHz,  it  is  thought  that  we  are  in  the  regime  where  the  conductivity  is 

dominated  by  volumic  conductivity  through  water  in  pores  and  cracks  and  that  surface 

conductivity is negligible. That is why the internal surface to volume ratio of the pores, which 

controls the relative importance of surface conduction processes in porous rocks (David et al. 

1993) was not measured.

By measuring the electrical potential in one direction (x,  y, or  z) when a parallel current 

flows  through  a  cross  section  of  a  sample,  the  impedancemeter  measures  the  complex 

impedance  Z of the sample, and the angle  θ. The resistance  R of the sample is deduced as 

Zcos(θ). The conductivity of the sample is then calculated as  σ = (L /  R S) where  L is the 

length of the sample, and S is the section area. Therefore the error on the rock conductivity is 

the sum of the errors on the measured resistance,  the measured length, and the calculated 

section, and is ± 0.9 %. Anisotropy of conductivity between  x,  y, and  z direction has been 

calculated as followed : σxz = (σz – σx) / σx, and its relative variation has been plotted. Note 

that experiments are performed in undrained regime.

Typical  resistance  measurements  were  of  the  order  of  65  to  81  ohm  in  horizontal 

directions, and of 140 to 181 ohm in the axial direction, which lead to resistivity values of 3.6 

- 4.5 to 1.9 - 2.5 ohm.m. The initial values of rock conductivities from 0.2 to 0.5 S/m are 
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given in Table 1. 

Results

Since the  sample  is  shortened during  the axial  compression  test,  its  strain is  the  axial 

displacement measured by the press divided by the initial  length of the sample.  The axial 

stress is the loading force divided by the cross section of  the sample, and the strength of the 

sample is the axial stress at failure.

Mechanical behaviour

Samples have been deformed up to 0.6-0.9 % in axial strain. They showed brittle axial 

fracture, the maximun stress ranged from 4.1 to 4.9 MPa, and Young’s modulus, obtained in 

the linear part of the curve, was 10-13 MPa (Table 1).

Electrical behaviour

Initial formation factors (water conductivity divided by rock conductivity) are 3.5 - 4.5 in 

horizontal directions and 1.9 - 2.4 in the axial direction (consistent with Jouniaux et al. 1996), 

showing that the samples are about twice more conductive in the axial direction than in the 

horizontal  plane.  Since the water conductivity  σf is about 1 S/m, the initial  value of rock 

conductivities are between 0.2 and 0.5 S/m. Initial  formation factors  Fz,  Fx,  Fy have been 

plotted versus saturation (Fig. 3) and show a light decrease with increasing saturation.

Variations of the rock conductivity in  X,  Y,  Z directions and variations of the anisotropy 

σxy, σzx, and σzy during the experimental tests have been plotted in Figure 4. The magnitude of 
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variation is about 2 - 4% of the initial rock conductivity value.

We now describe  the  behaviour  of  the  electrical  conductivity  of  the  six  studied  samples 

during the compression tests up to failure.

Sample  CME21  was  fully  saturated  and  its  porosity  was  36.1%.  The  electrical 

conductivities first decrease. At 73% of the strength the horizontal conductivities increase up 

to failure, the total variation being about 1%. The axial conductivity tends to increase at low 

stress (37% of strength), but then decreases well before failure (68% of strength). At failure 

the axial conductivity increases by 2 %, whereas the horizontal conductivities decrease by 1-

2%, σx decreasing less than σy (Fig. 4a). 

Sample CME22 was saturated at 95%. The horizontal conductivities decrease by 0.5% up 

to 55% of strength, and then increase by 0.5% up to failure. The axial conductivity increases 

slowly at low stresses, and then increases more rapidly by 1.5% from 45% of the strength to 

final rupture. Just before failure,  at 95% of strength,  the rate increase is dropping, except 

for σx (Fig. 4b).

Sample CME24 was saturated at 91%. The electrical conductivities slowly increase up to 

34% of strength, and then increase more rapidly, by 1.5-2% for  σx,  σy and 3% for  σz up to 

failure. Before failure, at 91% of strength the rate increase of the horizontal conductivities is 

dropping (Fig. 4c).

Sample CME23 was saturated at 87.6%. The electrical conductivities first decrease by 0.5-

0.7% up to 32 % of strength. Then the electrical conductivity increase up to failure, by 0.8% 

and 1.4% for σy and σz respectively, except for σx that decreases from 60% of strength up to 

failure. Before failure, at 82% of strength the rate increase in σy is dropping. Note that some 

σx data are missing, due to technical problems (Fig. 4d).

Sample CME13 was saturated at 85%. The electrical conductivities first slowly increase up 
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to 22% of strength, then increase up to failure, by 3 % for σx and σy, and 4% for σz. Before 

failure, at 95% of strength, the rate increase of the horizontal conductivities is dropping (Fig. 

4e).

Sample CME32 was saturated at 80%. The electrical conductivities slowly increase up to 

17% of strength, and then increase more rapidly up to failure by 1-1.5%, with a dropping in 

rate increase at 85% of strength (Fig. 4f).

Discussion

Electrical conductivity at various saturations (intact samples)

The resistivity of the samples roughly increases when water saturation is decreased,  as 

shown in Fig.3. This behaviour is consistent with the fact that the mineral grains act as an 

insulating matrix and conduction occurs solely through the pore fluid. The expression used to 

describe the variation of formation factor F with saturation Sw and porosity Φ is usually F = 

Φ-m Sw
-n (Archie 1942). Since we compare different samples in Figure 3, it may explain the 

roughly  feature  of  the  increase  of  formation  factor  with  decreasing  saturation.  When  the 

sample is fully saturated (sample CME21), the m-value deduced from this expression is 1 ± 

0.2 (consistent with Jouniaux et al. 1996), which is a low value for cementation exponent in 

carbonates  (Focke & Munn 1985;  Sen  et  al. 1997).  The  n-value  deduced from the  axial 

formation factor results (Fig. 3) is about 1, consistent with the observation that the n-value is 

close to the m-value (Waxman & Smits 1968). For the horizontal results, their dispersion does 

not allow us to derive a  n-value. Especially the lower horizontal formation factor value at 

80% water saturation and the dispersion observed at 87.6% saturation may be due to some 

heterogeneities in the horizontal lithology of the concerned samples.
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Since our samples were saturated from 100% to 80%, we may assume that we are not in 

the  low-saturation  regime  where  the  conductivity  involves  surface  conduction.  In  low-

saturation regime, a dramatic decrease in resistivity occurs when saturation is increased, up to 

the presence of a few monolayers of water on the internal rock surfaces (Knight & Dvorkin 

1992). These few monolayers of water correspond to water saturation of 4 % to 10 % for the 

studied sandstones by Knight & Dvorkin (1992) and have been interpreted as the thickness of 

water layers for which the behaviour of water changes from that of a surface phase to that of a 

bulk phase (Knight & Dvorkin 1992). It can therefore be assumed that by using saturation 

between  80% and  100%,  the  main  mechanism  involved  in  the  conductivity  will  be  the 

conductivity of bulk water.

Effect  of  uniaxial  compression  on  the  electrical  conductivity  of  fully  saturated  sample  

(CME21)

When the rock is saturated, and in drained conditions, the axial electrical conductivity is 

thought first  to decrease,  and then to increase with compression.  At the beginning of the 

deformation process, the closure of pores and subhorizontal cracks full of water induces a 

decrease in conducting paths and the conductivity of the rock decreases. Then, when new 

axial  cracks  form  in  the  rock  and  when  water  is  available,  these  cracks  become  new 

conducting  paths,  and  the  conductivity  of  the  rock  increases.  This  behaviour  has  been 

observed  in  triaxial  experiments  on  crystalline  rocks  (Brace  &  Orange  1968),  on 

Fontainebleau sandstone (Jouniaux et al. 1992), and on Darley Dale sandstone (Glover et al. 

1997). It has been shown by Brace & Orange (1968) that the increase of conductivity begins 

about when the rock becomes dilatant and that a rapid increase in conductivity accompanies 

the rapid increase in volume. Most of the time the magnitude of conductivity increase is much 
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more  larger  than  the  magnitude  of  conductivity  decrease.  This  is  not  the  case  in  our 

experiments, maybe because in uniaxial compression tests, the crack closure at low stress, 

which leads to a decrease in conductivity when in drained conditions, is more important than 

in  triaxial  compression  tests,  where  the  hydrostatic  stress  applied  to  the  sample  prior  to 

triaxial testing has already partly closed the initial cracks.

In our study, measurements on CME21 sample which was fully saturated,  show first a 

decrease  and  then  an  increase  in  horizontal  conductivities,  as  expected  for  the  axial 

conductivity.  Note  that  the  horizontal  conductivity  of  a  granite  sample  under  triaxial 

deformation  increased  too  (Brace  &  Orange  1968).  But  the  behaviour  of  the  axial 

conductivity is more complex with an unusual transient increase at about 70% of strength, 

roughly corresponding to the local minimum in the horizontal conductivity curves. Indeed in 

our uniaxial undrained experiments the sample is not connected to a water reservoir as it is 

usually the case in triaxial experiments, so that the available water volume is only the initial  

water volume present in the rock. The transient vertical conductivity increase may thus be 

explained by the differential closure of subhorizontal cracks with their water content being 

expelled into the opening vertical cracks. The following light decrease may then be due to a 

transient  lack of water in  the new axial  cracks  forming in the sample.  Further closing of 

subhorizontal cracks leads to the increase of water saturation in axial cracks resulting, when 

combined  to  their  coalescence,  in  the  increase  in  axial  conductivity  and  the  decrease  in 

horizontal conductivities at failure. 

The increase rate of axial conductivity from 40 % to 70 % of strength is 0.13% / MPa, of 

the same order as the one observed by Brace & Orange (1968) on Pottsville sandstone (0.14% 

/  MPa),  and  lies  between  the  values  obtained  by  Glover  et  al. (1997)  on  Darley  Dale 

sandstone (0.06 %/ MPa) and those measured by Jouniaux  et al. (1992) on Fontainebleau 

sandstone (0.2 to 0.6% / MPa). At failure, the 2% increase in the axial conductivity and the 
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decrease  in  horizontal  conductivities  confirm  the  subverticality  of  the  final  macroscopic 

fracture.

The conductivity increase is usually related to the crack porosity Φc, corresponding to new 

formed cracks,  which is  the difference between the actual  volume change and the elastic 

volume change. The conductivity through cracks σc, which is obtained by substracting crack-

free conductivity (that would be the linear decrease of the conductivity from the beginning of 

the  compression  test,  Figure  5a:  straightline)  from  total  conductivity  (the  measured 

conductivity, Figure 5a: empty squares), was calculated and compared to the crack porosity 

by  Brace  &  Orange  (1968).  These  authors  showed  that  the  crack  conductivity  was 

proportional to the crack porosity, so that σc/σf = Φc
m with m = 1 for their studied crystalline 

rocks,  whereas  for  the  Pottsville  sandstone  m =  2.  The  m-value,  deduced  from  two 

independent  measurements  (volume  change  and  conductivity  change),  was  shown  to  be 

constant during compression up to the failure (Brace & Orange 1968). The same approach has 

been used by Glover et al. (1996), who assumed a m-value equal to 2 to compute a damage 

parameter which is the crack porosity. The crack porosity Φc has been computed for CME21 

sample (Fig. 5b), with the m-value deduced from the measurements of porosity and formation 

factor before the deformation test (m = 1), and assuming that this m-value is constant during 

compression, as shown by Brace & Orange (1968). It can be seen that the crack porosity starts 

to increase at 0.33% of axial strain, meaning 31% of strength, and increases up to 0.46% of 

strain (68% of strength). When the rock is saturated, the conductivity change can therefore be 

related to the crack porosity and according to this analysis, the compression of the sample 

leads first to a decrease in volume, and then to a volume increase up to 68% of strength. As 

noted  previously  a  partial  desaturation  of  new  forming  cracks  may  happen  leading  to  a 

transient decrease of axial  conductivity,  and therefore a transient  decrease of the deduced 

crack porosity (Fig. 5b, dotted-line), before their drastic increase as failure approaches.
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Since the cracks induced by the deformation are created in the axial direction, this analysis 

is not suitable for horizontal electrical measurements. Moreover, note that the crack porosity 

is related to the electrical conductivity change only if the cracks are filled with water, which is 

not the case for the following not–fully saturated conditions.

Effect  of  water  saturation  on  the  electrical  conductivity  behaviour  during  uniaxial  

compression tests

The largest variation in electrical conductivity during compression is usually in the axial 

direction (except for CME23 sample), in accordance to the fact that cracks are created in the 

axial direction during these uniaxial experiments. There is no obvious relation between the 

amplitude of conductivity increase and the water saturation, at least for the studied saturation 

range.  When the water  saturation  is  decreased,  the  electrical  conductivity  increase occurs 

earlier during compression (Fig. 6), so that the decrease in conductivity at low stress is less 

and less present (except for CME23 sample). The increase in conductivity occurs at 68%, 

50%, 34%, 32%, 22%, and 17% of strength (see Figure 4) for the decreasing saturations of 

100%, 95%, 91%, 87.6%, 85%, and 80% respectively. In order to compare the mechanical 

behaviour of the different samples, the axial stress has been plotted versus the axial strain on a 

single graph for the six studied samples (Figure 7). The samples show a similar mechanical 

behaviour, except sample CME24 which shows a rather compliant initial behaviour maybe 

due  to  the  presence  of  subhorizontal  flaws. Therefore  the  differences  in  the  electrical 

conductivity variation during the compression will not be attributed to a possible mechanical 

difference, except possibly for the sample CME24.

Previous  experiments  on  sedimentary  rocks  of  high  porosity  (40-55%)  under  uniaxial 

compression at various water saturation from 2% to 25% showed an increase in electrical 
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conductivity  with  stress  (Yamazaki  1965;  1966).  The conductivity  increase  was 0.5% on 

lapilli tuff at 25% water saturation, 2.5% on tuffaceous sandstone at 9.5% of water saturation; 

and 1% on pumice tuff at 5.6% of  water saturation. When the initial  water saturation was 

increased from 2% to 25% in lapilli  tuff  samples,  the magnitude of conductivity increase 

during  the  uniaxial  compression  tests  dropped  from 11% to  0.5% (Yamazaki  1966).  As 

already mentioned by Brace & Orange (1968), when the rock is partially saturated,  water 

films form only a partial network in the rock, and at low stress when cracks and pores are  

closed and porosity reduced, the connectivity of these films is increased. So that the initial 

conductivity is small and then increases with stress. Note that only a small water amount is 

needed to form a connected path throughout the sample, as low as one fifth of a monolayer of 

water  on  the  internal  rock  surfaces,  corresponding  to  water  saturation  below 1% for  the 

sandstones studied by Knight & Dvorkin (1992). 

However, the exact quantification of the involved processes both during the compression 

and in non-saturated and undrained conditions is hardly feasible. Some modelling exists that 

explains the decrease of electrical conductivity during the drainage of samples, leading to a 

decrease in water saturation,  but without any deformation [see for exemple Brovelli  et al. 

2005]. Other modelling exists that explains the effect of stress (P), in hydrostatic conditions 

and in saturated and drained conditions, on the electrical conductivity [Kaselow & Shapiro 

2004]. From Archie’s law in saturated conditions F = Φ-m, these authors deduced a variation 

of the rock electrical conductivity σr as log (σf/σr) = A + KP –Bexp(-DP), the coefficients A, 

K,  B, and  D being fitting parameters for a given set of measurements. The first and second 

terms  are related  to  the variation  of the stiff  porosity,  and the last  term is  related  to  the 

compliant porosity. Note that in our case the pressure is the axial stress and not the hydrostatic 

pressure. From Figure 6 it seems that the behaviour of the samples can be splitted into two 

groups:  for  the  first  group corresponding  to  samples  with  higher  water  saturation  values 
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(100%,  95%,  and 87.6%,  meaning  samples  CME21,  CME22,  and CME23)  the  electrical 

conductivity decreases during the compaction phase before increasing at higher stress values, 

for the second group corresponding to lower water saturation values (85% and 80%, meaning 

CME13  and  CME32)  the  electrical  conductivity  increases  from  the  beginning  of  the 

compression,  the  sample  CME24  may  be  not  comparable  because  of  its  different  initial 

mechanical behaviour (Fig. 7).

In our case we should consider Archie’s law in unsaturated conditions (see above). The 

induced relative variation of the rock conductivity is given by:

δ δ δδ S
m n

S

σ σ Φ
σ σ Φ

= + +r f w

r f w

Water conductivity σf being constant, the first term is equal to zero. We can therefore see 

that two competing effects are present in non saturated and undrained conditions: the relative 

variations of porosity Φ and saturation Sw during compression. 

At low stress, when the rock volume is decreasing and pores or sub-horizontal cracks are 

closing, the saturation is increasing since the water volume is constant. The water is expelled 

from closing cracks and distributed in the still open porous network. At this stage, the porosity 

decreases (the second term is negative) and the saturation increases (the last term is positive). 

The result of these competing effects depends on the initial saturation: a small decrease or 

almost constant axial and horizontal conductivity is observed for the first group of samples 

(higher water  saturation),  a small  increase is  observed for the second group (lower water 

saturation) (Figs. 4 and 6).

When stress  is  further  increased  the  electrical  conductivity  of  partially  saturated  rocks 

increases,  both  in  axial  and  horizontal  directions.  This  increase  occurs  earlier  during  the 

compression  process  when  the  initial  water  saturation  is  lower  (Figs.  4  and  6).  During 

dilatancy the porosity increases  and the saturation decreases,  so that  the two terms in the 
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equation of the conductivity variation are still in competition. The result of these competing 

effects shows that the connected path of water is eventually enhanced, both in the axial and 

horizontal directions (Fig. 6). 

We finally plot the logarithm of the rock conductivity  versus the axial stress (Fig. 8) in 

order to quantify the effect of stress on the evolution of rock conductivity in a similar way as 

that followed by Kaselow & Shapiro (2004). This analysis is done before the dilatancy onset 

at about 3.5 MPa (Fig. 7) to only take into account the initial crack population.

For  highly  saturated  samples  CME21 (100%) and  CME22 (95%)  the  variation  of  the 

logarithm of the conductivity is not a straightline, neither for CME23 sample. On the contrary, 

for lower saturation, that is for samples CME32 (80%), CME13 (85%), and CME24 (91%), a 

linear  relationship  exists  in  the  axial  (z)  direction  between  the  logarithm  of  the  rock 

conductivity  and  stress  with  a  slope  of  0.0017,  0.0027  and  0.0023  MPa-1 respectively, 

confirming  that  there  is  no  clear  relation  between  the  amplitude  of  electric  conductivity 

variation during compression and the initial  water saturation value,  at  least  in the studied 

range. In the horizontal directions, the slopes are 0.0011, 0.002, 0.0017 (in y direction), and 

0.0013, 0.002, 0.0019 (in x direction) for samples CME32, CME13, and CME24 respectively. 

The slope is therefore about 35% larger in axial direction than in the horizontal directions, 

which is consistent with the fact that cracks are created in the axial direction. Moreover, note 

that in undrained and non saturated conditions, the linear relationship observed between log σr 

and stress means that the relative increase in the electrical conductivity is larger as one goes 

along the compression.

Evolution of the anisotropy of electrical conductivity during compression

The plots of the electrical conductivity anisotropy (Fig. 4) show that there is no anisotropy 
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in the radial plane. The anisotropy between axial and radial directions is larger, about 1 to 4%, 

because during compression new cracks are created in the axial direction. We note that there 

is usually a continuous small increase in the anisotropy between axial and radial directions 

during the compression test, except the transient decrease in sample CME21. It results that the 

anisotropy between axial and radial directions is about 0.5-2% just before failure. At failure a 

drastic increase of this anisotropy can be seen, up to 5-6% (CME21, CME24, and CME13 

samples). 

Conclusion

When  the  rock  is  fully  saturated  the  electrical  conductivity  first  decreases,  and  then 

increases during the uniaxial compression test. Although our experiments are performed on 

highly porous sedimentary rocks, the magnitude of the rock conductivity variation is of the 

same order, meaning 1 – 4 %, as the one measured usually on granite or sandstone, and most 

of  the  time  under  triaxial  deformation.  We  show  that  when  saturation  is  decreased  the 

conductivity increase occurs earlier in the compression process, from 68% to 17% of strength 

for 100% to 80% of water saturation respectively. Therefore the decrease in conductivity at 

low stress  is  less  and  less  present.  Continuous  increase  of  electrical  conductivity  due  to 

compression is measured as soon as the saturation is decreased to 85%.  For low saturation 

levels such as 80 – 85 %, the compression phase leads to an increase in axial conductivity,  

roughly following a power law 

0.00210 P
rσ :

, where P is the axial stress in MPa. It is usually 

suggested to interpret the field observations of preseismic change in crustal resistivity in the 

light of laboratory measurements performed in saturated conditions. Although an upscaling of 

laboratory measurements to in-situ measurements is not simple, we suggest that a continuous  

increase of electrical conductivity due to compression should be probably expected as soon as 
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the rocks are not fully saturated. These non-saturated conditions are more representative of 

the shallow crust. However at the scale of the sample the electrical conductivity increase is 

only about 1 - 4%. Moreover a drastic increase in the anisotropy of electrical conductivity at 

fracture could be expected, and at the scale of the sample the anisotropy beween axial and 

radial directions can be observed up to 5-6% at rupture.
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Figures and Tables

CME21 CME22 CME24 CME23 CME13 CME32
Porosity (%) 36.1 37.1 36.3 37.2 35.4 37.6
Water saturation (%) 100 95 91 87.6 85 80
E (MPa) 10.5 11.8 12.0 11.3 13.5 12.2
Peak stress (MPa) 4.0 4.5 4.1 4.5 4.9 4.7
Strain at peak stress (%) 0.68 0.63 0.86 0.70 0.69 0.63
σ0x (S/m) 0.28 0.26 0.25 0.24 0.22 0.25

σ0y (S/m)     0.28 0.27 0.26 0.28 0.22 0.25

σ0z (S/m) 0.52 0.53 0.44 0.48 0.40 0.41

σf (S/m) 1.027 1.008 1.008 1.008 0.967 0.994

Table 1. Porosity, water saturation, Young’s modulus (E), peak stress, strain at peak stress, 

initial rock conductivity values, and water conductivity, for the studied samples.
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Figure 1. Thin section of Meriel limestone. The porous network is represented by blue epoxy.

 

Figure 2. Scheme of the sample.
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Figure 3. Initial formation factor in the three directions X, Y, Z versus water saturation of the 

samples.
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Figure 4. Axial stress, rock conductivity,  and electrical anisotropy,  versus axial strain. 4a: 

CME21 sample; 4b: CME22 sample; 4c: CME24 sample; 4d: CME23 sample; 4e: CME13 

sample; 4f: CME32 sample.
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Figure 6. Rock conductivity versus axial stress for the six studied samples.
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Figure 7.  Axial stress versus axial strain for the six studied samples.
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Figure 8. Logarithm of the rock conductivity versus axial stress for the six studied samples.
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